DeepLearnToolbox
================
A Matlab toolbox for Deep Learning.
Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data.
It is inspired by the human brain's apparent deep (layered, hierarchical) architecture.
A good overview of the theory of Deep Learning theory is
[Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf)
For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng.
* [The Next Generation of Neural Networks](http://www.youtube.com/watch?v=AyzOUbkUf3M) (Hinton, 2007)
* [Recent Developments in Deep Learning](http://www.youtube.com/watch?v=VdIURAu1-aU) (Hinton, 2010)
* [Unsupervised Feature Learning and Deep Learning](http://www.youtube.com/watch?v=ZmNOAtZIgIk) (Ng, 2011)
If you use this toolbox in your research please cite [Prediction as a candidate for learning deep hierarchical models of data](http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6284)
```
@MASTERSTHESIS\{IMM2012-06284,
author = "R. B. Palm",
title = "Prediction as a candidate for learning deep hierarchical models of data",
year = "2012",
}
```
Contact: rasmusbergpalm at gmail dot com
Directories included in the toolbox
-----------------------------------
`NN/` - A library for Feedforward Backpropagation Neural Networks
`CNN/` - A library for Convolutional Neural Networks
`DBN/` - A library for Deep Belief Networks
`SAE/` - A library for Stacked Auto-Encoders
`CAE/` - A library for Convolutional Auto-Encoders
`util/` - Utility functions used by the libraries
`data/` - Data used by the examples
`tests/` - unit tests to verify toolbox is working
For references on each library check REFS.md
Setup
-----
1. Download.
2. addpath(genpath('DeepLearnToolbox'));
Everything is work in progress
------------------------------
Example: Deep Belief Network
---------------------
```matlab
function test_example_DBN
load mnist_uint8;
train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
train_y = double(train_y);
test_y = double(test_y);
%% ex1 train a 100 hidden unit RBM and visualize its weights
rng(0);
dbn.sizes = [100];
opts.numepochs = 1;
opts.batchsize = 100;
opts.momentum = 0;
opts.alpha = 1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
figure; visualize(dbn.rbm{1}.W'); % Visualize the RBM weights
%% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN
rng(0);
%train dbn
dbn.sizes = [100 100];
opts.numepochs = 1;
opts.batchsize = 100;
opts.momentum = 0;
opts.alpha = 1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
%unfold dbn to nn
nn = dbnunfoldtonn(dbn, 10);
nn.activation_function = 'sigm';
%train nn
opts.numepochs = 1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.10, 'Too big error');
```
Example: Stacked Auto-Encoders
---------------------
```matlab
function test_example_SAE
load mnist_uint8;
train_x = double(train_x)/255;
test_x = double(test_x)/255;
train_y = double(train_y);
test_y = double(test_y);
%% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN
% Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
sae = saesetup([784 100]);
sae.ae{1}.activation_function = 'sigm';
sae.ae{1}.learningRate = 1;
sae.ae{1}.inputZeroMaskedFraction = 0.5;
opts.numepochs = 1;
opts.batchsize = 100;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')
% Use the SDAE to initialize a FFNN
nn = nnsetup([784 100 10]);
nn.activation_function = 'sigm';
nn.learningRate = 1;
nn.W{1} = sae.ae{1}.W{1};
% Train the FFNN
opts.numepochs = 1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.16, 'Too big error');
%% ex2 train a 100-100 hidden unit SDAE and use it to initialize a FFNN
% Setup and train a stacked denoising autoencoder (SDAE)
rng(0);
sae = saesetup([784 100 100]);
sae.ae{1}.activation_function = 'sigm';
sae.ae{1}.learningRate = 1;
sae.ae{1}.inputZeroMaskedFraction = 0.5;
sae.ae{2}.activation_function = 'sigm';
sae.ae{2}.learningRate = 1;
sae.ae{2}.inputZeroMaskedFraction = 0.5;
opts.numepochs = 1;
opts.batchsize = 100;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')
% Use the SDAE to initialize a FFNN
nn = nnsetup([784 100 100 10]);
nn.activation_function = 'sigm';
nn.learningRate = 1;
%add pretrained weights
nn.W{1} = sae.ae{1}.W{1};
nn.W{2} = sae.ae{2}.W{1};
% Train the FFNN
opts.numepochs = 1;
opts.batchsize = 100;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');
```
Example: Convolutional Neural Nets
---------------------
```matlab
function test_example_CNN
load mnist_uint8;
train_x = double(reshape(train_x',28,28,60000))/255;
test_x = double(reshape(test_x',28,28,10000))/255;
train_y = double(train_y');
test_y = double(test_y');
%% ex1 Train a 6c-2s-12c-2s Convolutional neural network
%will run 1 epoch in about 200 second and get around 11% error.
%With 100 epochs you'll get around 1.2% error
rng(0)
cnn.layers = {
struct('type', 'i') %input layer
struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %sub sampling layer
struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %subsampling layer
};
cnn = cnnsetup(cnn, train_x, train_y);
opts.alpha = 1;
opts.batchsize = 50;
opts.numepochs = 1;
cnn = cnntrain(cnn, train_x, train_y, opts);
[er, bad] = cnntest(cnn, test_x, test_y);
%plot mean squared error
figure; plot(cnn.rL);
assert(er<0.12, 'Too big error');
```
Example: Neural Networks
---------------------
```matlab
function test_example_NN
load mnist_uint8;
train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
train_y = double(train_y);
test_y = double(test_y);
% normalize
[train_x, mu, sigma] = zscore(train_x);
test_x = normalize(test_x, mu, sigma);
%% ex1 vanilla neural net
rng(0);
nn = nnsetup([784 100 10]);
opts.numepochs = 1; % Number of full sweeps through data
opts.batchsize = 100; % Take a mean gradient step over this many samples
[nn, L] = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.08, 'Too big error');
% Make an artificial one and verify that we can predict it
x = zeros(1,28,28);
x(:, 14:15, 6:22) = 1;
x = reshape(x,1,28^2);
figure; visualize(x');
predicted = nnpredict(nn,x)-1;
assert(predicted == 1);
%% ex2 neural net with L2 weight decay
rng(0);
nn = nnsetup([784 100 10]);
nn.weightPenaltyL2 = 1e-4; % L2 weight decay
opts.numepochs = 1; % Number of full sweeps through data
opts.batchsize = 100; % Take a mean gradient step over this many samples
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');
%% ex3 neural net with dropout
rng(0);
nn = nnsetup([784 100 10]);
nn.dropoutFraction = 0.5; % Dropout fraction
opts.numepochs = 1; % Number of full sweeps through data
opts.batchsize = 100; % Take a mean gradient step over this many samples
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.1, 'Too big error');
%% ex4 neural net with sigmoid activation function
rng(0);
nn = nnsetup([784 100 10]);
nn.activation_function = 'sigm'; % Sigmoid activation function
nn.learningRate = 1; % Sigm require a lower learning rate
opts.numepochs = 1; % Number of full sweeps through data
opts.batchsize = 100; % Take a mean gradient step over this
![avatar](https://profile-avatar.csdnimg.cn/05fc71598e354e3491027e14cda7f433_madmaxs.jpg!1)
MADMAXS
- 粉丝: 4
- 资源: 10
最新资源
- 高阶AI指令大合集!.zip
- DeepSeek零基础到精通手册(保姆级教程).zip
- DeepSeek使用攻略.zip
- 【官网提示库】探索 DeepSeek 提示词样例,挖掘更多可能.zip
- 《7天精通DeepSeek实操手册》.zip
- 教大家如何使用Deepseek AI进行超级降维知识输出V1.0版.zip
- DeepSeek 15天指导手册-从入门到精通.zip
- 10天精通+DeepSeek+实操手册.zip
- 112页!DeepSeek 7大场景+50大案例+全套提示词 从入门到精通干货-202502.zip
- Deepseek+V3从零基础到精通学习手册(1).zip
- OMO2203class3面向对象.mp4
- 三相逆变器下垂控制参数调整与波形质量分析报告:直流侧电压800V,交流侧电压220V,开关频率达10kHz,模拟调频工况下性能表现优越,三相逆变器下垂控制参数调整与波形质量分析报告:直流侧电压800V
- 工具变量-上市公司企业绿色创新泡沫数据(1995-2023年).txt
- Simulink Simscape中的UR5机械臂三次多项式轨迹规划仿真:动态动画展示角度、力矩与运动参数图,六自由度UR5机械臂Simulink Simscape三次多项式轨迹规划仿真动画及数据图表
- 基于FPGA与Matlab算法的超声多普勒频移解调系统:DDS生成信号、混合与滤波处理、FFT运算及峰值搜索比对,基于FPGA和MATLAB的超声多普勒频移解调技术:DDS生成信号、混频处理、滤波、F
- 松下FP-XH双PLC 10轴摆盘程序范例:清晰分输出与调试、报警通信、启动复位,维纶通触摸屏操作,一年平稳运行经验分享,松下FP-XH双PLC 10轴摆盘程序范例:清晰思路,易学易懂,带触摸屏与通信
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)