开发环境: Pycharm + Python3.6 + 卷积神经网络算法
基于人脸表面特征的疲劳检测,主要分为三个部分,打哈欠、眨眼、点头。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。
视觉疲劳检测原理:因为人在疲倦时大概会产生两种状态: 眨眼:正常人的眼睛每分钟大约要眨动10-15次,每次眨眼大概0.2-0.4秒,如果疲倦时眨眼次数会增多,速度也会变慢。打哈欠:此时嘴会长大而且会保持一定的状态。因此检测人是否疲劳可以从眼睛的开合度,眨眼频率,以及嘴巴张合程度来判断一个人是否疲劳。
检测工具
dlib :一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用。
眨眼计算原理:
(1) 计算眼睛的宽高比
基本原理:计算 眼睛长宽比 Eye Aspect Ratio,EAR.当人眼睁开时,EAR在某个值上下波动,当人眼闭合时,EAR迅速下降,理论上会接近于零,当时人脸检测模型还没有这么精确。所以我们认为当EAR低于某个阈值时,眼睛处于闭合状态。为检测眨眼次数,需要设置同一次眨眼的连续帧数。眨眼速度比较快,一般1~3帧就完成了眨眼动作。两个阈值都要根据实际情况设置。
(2)当前帧两双眼睛宽高比与前一帧的差值的绝对值(EAR)大于0.2,则认为是疲劳
代码思路
第一步:使用dlib.get_frontal_face_detector() 获得脸部位置检测器
第二步:使用dlib.shape_predictor获得脸部特征位置检测器
第三步:分别获取左右眼面部标志的索引
第四步:打开cv2 本地摄像头
第五步:从视频流进行循环,读取图片,并对图片做维度扩大,并进灰度化
第六步:使用detector(gray, 0) 进行脸部位置检测
第七步:循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息
第八步:将脸部特征信息转换为数组array的格式
第九步:提取左眼和右眼坐标
第十步:构造函数计算左右眼的EAR值,使用平均值作为最终的EAR
第十一步:使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
第十二步:进行画图操作,用矩形框标注人脸
第十三步:分别计算左眼和右眼的评分求平均作为最终的评分,如果小于阈值,则加1,如果连续3次都小于阈值,则表示进行了一次眨眼活动
第十四步:进行画图操作,68个特征点标识
第十五步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示
第十六步:统计总眨眼次数大于50次屏幕显示睡着。
没有合适的资源?快使用搜索试试~ 我知道了~
毕业设计基于Python卷积神经网络人脸识别驾驶员疲劳检测与预警系统.zip
共19个文件
py:11个
xml:2个
txt:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 165 浏览量
2024-04-08
11:11:20
上传
评论
收藏 78.33MB ZIP 举报
温馨提示
毕业设计基于Python卷积神经网络人脸识别驾驶员疲劳检测与预警系统.zip开发环境: Pycharm + Python+ 卷积神经网络算法基于人脸表面特征的疲劳检测,主要分为三个部分,打哈欠、眨眼、点头。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。 视觉疲劳检测原理:因为人在疲倦时大概会产生两种状态: 眨眼:正常人的眼睛每分钟大约要眨动10-15次,每次眨眼大概0.2-0.4秒,如果疲倦时眨眼次数会增多,速度也会变慢。打哈欠:此时嘴会长大而且会保持一定的状态。因此检测人是否疲劳可以从眼睛的开合度,眨眼频率,以及嘴巴张合程度来判断一个人是否疲劳。 检测工具 dlib :一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用。 眨眼计算原理: (1) 计算眼睛的宽高比 基本原理:计算 眼睛长
资源推荐
资源详情
资源评论
收起资源包目录
基于Python卷积神经网络人脸识别驾驶员疲劳检测与预警系统.zip (19个子文件)
Python_FatigueDrivingDetection-主master
baojin.py 145B
evaluate.py 1KB
haarcascade_files
haarcascade_eye.xml 333KB
haarcascade_frontalface_default.xml 908KB
convert.py 7KB
data_provider.py 1KB
split_train_test.py 596B
运行说明.txt 266B
detect_class.py 27KB
requirements.txt 257B
load_and_process.py 863B
models
_mini_XCEPTION.102-0.66.hdf5 852KB
cnn.py 13KB
__pycache__
cnn.cpython-36.pyc 7KB
check.py 1KB
tkinter_UI.py 26KB
extract_face.py 1KB
README.md 3KB
tkinter_UI.exe 78.16MB
共 19 条
- 1
资源评论
- 2301_772044352024-04-29资源很实用,对我启发很大,有很好的参考价值,内容详细。
盈梓的博客
- 粉丝: 9298
- 资源: 2203
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功