馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
- [About Weights & Biases](#about-weights-&-biases)
- [First-Time Setup](#first-time-setup)
- [Viewing runs](#viewing-runs)
- [Disabling wandb](#disabling-wandb)
- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
- [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With
a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture,
hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best
practices for machine learning. How W&B can help you optimize your machine learning workflows:
- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2)
model performance in real time
- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4)
visualized automatically
- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI)
for powerful, extensible visualization
- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8)
interactively with collaborators
- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be
provided a unique run **name** within that project as project/name. You can also manually set your project and run name
as:
```shell
$ python trainfd.py --project ... --name ...
```
YOLOv5 notebook
example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
- Training & Validation losses
- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
- Learning Rate over time
- A bounding box debugging panel, showing the training progress over time
- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
- System: Disk I/0, CPU utilization, RAM memory usage
- Your trained model as W&B Artifact
- Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
- training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
- To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training
evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: TrainFD and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python trainfd.py --upload_data eval</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>
W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>
{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: TrainFD using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python trainfd.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python trainfd.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python trainfd.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_data
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
python实现的红外可见光融合进行目标检测项目源码.zip python实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见光融合进行目标检测项目源码.zippython实现的红外可见
资源推荐
资源详情
资源评论
收起资源包目录
python实现的红外可见光融合进行目标检测项目源码.zip (133个子文件)
TNO_028.bmp 274KB
TNO_028.bmp 274KB
CITATION.cff 434B
Dockerfile 2KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
preview.gif 4.57MB
.gitignore 395B
tutorial.ipynb 13KB
first_figure.jpg 564KB
ROAD_040.jpg 16KB
ROAD_040.jpg 11KB
README.md 11KB
README.md 2KB
README.md 865B
README.md 96B
preview.png 11.19MB
M3FD_00471.png 818KB
M3FD_00471.png 732KB
train_process.png 48KB
dataloaders.py 46KB
general.py 41KB
common.py 35KB
wandb_utils.py 27KB
tf.py 25KB
plots.py 21KB
torch_utils.py 16KB
train_fd.py 15KB
yolo.py 15KB
u2net.py 15KB
metrics.py 14KB
augmentations.py 12KB
detect.py 10KB
loss.py 10KB
fuse.py 9KB
m3fd.py 8KB
train.py 8KB
__init__.py 8KB
train_f.py 8KB
autoanchor.py 7KB
downloads.py 7KB
benchmarks.py 7KB
roadscene.py 4KB
experimental.py 4KB
tno.py 4KB
iqa.py 3KB
infer_fd.py 3KB
activations.py 3KB
checker.py 3KB
saliency.py 3KB
infer_f.py 3KB
autobatch.py 3KB
callbacks.py 2KB
scenario_reader.py 2KB
infer.py 2KB
data_preview.py 2KB
generator.py 2KB
train.py 2KB
reader.py 1KB
restapi.py 1KB
sweep.py 1KB
resume.py 1KB
environment_probe.py 1KB
__init__.py 1KB
smart_optimizer.py 1KB
log_dataset.py 1KB
discriminator.py 987B
convert_to_png.py 942B
choose_images.py 898B
generate_mask.py 720B
div_loss.py 690B
get_param_groups.py 634B
example_request.py 368B
Loader.py 347B
dict_to_device.py 290B
__init__.py 274B
test_saliency.py 262B
__init__.py 198B
__init__.py 181B
test_fuse.py 34B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
mime.sh 780B
requirements.txt 1KB
requirements.txt 352B
additional_requirements.txt 105B
pred.txt 40B
default.yaml 5KB
tardal-ct.yaml 5KB
tardal-tt.yaml 5KB
共 133 条
- 1
- 2
资源评论
盈梓的博客
- 粉丝: 9562
- 资源: 2308
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功