Eval Log Fri Jul 14 10:53:50 2023
Namespace(backbone='vgg16', batch_size=1, checkpoints_dir='checkpointds_dir', clip_max_norm=0.1, data_root='/home/king/Projects/LiuHuaiyang/p2p_plant_counting/p2p_Soybean/soybean_datasets/SOYBEAN/data_root', dataset_file='SOYBEAN', eos_coef=0.05, epochs=200, eval=False, eval_freq=2, frozen_weights=None, gpu_id=0, half=False, line=2, lr=0.0001, lr_drop=1000, lr_fpn=1e-05, num_workers=1, output_dir='output_dir', point_loss_coef=0.0002, resume='', row=2, seed=42, set_cost_class=1, set_cost_point=0.5, start_epoch=0, tensorboard_dir='tensorboard_dir', threshold=0.5, vis_dir='/media/king/DATA/LiuHuaiyang/p2p_plant_counting/p2p_Soybean/vis_p2pnetSoy_testing', weight_decay=0.0001)mae:97017.74242424243, mse:103794.91865000235, time:108.60173106193542, best mae:97017.74242424243metric/mae@0: 97017.74242424243metric/mse@0: 103794.91865000235loss/loss@0: 0.10297484024767838loss/loss_ce@0: 0.10211981854416312[ep 0][lr 0.0001000][24.29s]loss/loss@1: 0.08284864179967415loss/loss_ce@1: 0.08227750274633604[ep 1][lr 0.0001000][23.53s]mae:122.93181818181819, mse:132.69568169082947, time:80.5579125881195, best mae:122.93181818181819metric/mae@1: 122.93181818181819metric/mse@1: 132.69568169082947loss/loss@2: 0.07435253626918273loss/loss_ce@2: 0.07396524308604144[ep 2][lr 0.0001000][22.99s]loss/loss@3: 0.07886109360685897loss/loss_ce@3: 0.07845561102860504[ep 3][lr 0.0001000][24.04s]mae:122.93181818181819, mse:132.69568169082947, time:80.51736307144165, best mae:122.93181818181819metric/mae@2: 122.93181818181819metric/mse@2: 132.69568169082947loss/loss@4: 0.07873950401941936loss/loss_ce@4: 0.0784250135784821[ep 4][lr 0.0001000][24.67s]loss/loss@5: 0.0769289743731774loss/loss_ce@5: 0.07659169414361554[ep 5][lr 0.0001000][26.27s]mae:122.93181818181819, mse:132.69568169082947, time:80.38532495498657, best mae:122.93181818181819metric/mae@3: 122.93181818181819metric/mse@3: 132.69568169082947loss/loss@6: 0.07070395803921634loss/loss_ce@6: 0.07042609408335199[ep 6][lr 0.0001000][24.86s]loss/loss@7: 0.07621902717454802loss/loss_ce@7: 0.07593307350688273[ep 7][lr 0.0001000][28.40s]mae:122.93181818181819, mse:132.69568169082947, time:80.58882284164429, best mae:122.93181818181819metric/mae@4: 122.93181818181819metric/mse@4: 132.69568169082947loss/loss@8: 0.07104344621655487loss/loss_ce@8: 0.07080117432725808[ep 8][lr 0.0001000][25.84s]loss/loss@9: 0.0669034445244405loss/loss_ce@9: 0.06662193678378586[ep 9][lr 0.0001000][25.94s]mae:122.93181818181819, mse:132.69568169082947, time:80.34734010696411, best mae:122.93181818181819metric/mae@5: 122.93181818181819metric/mse@5: 132.69568169082947loss/loss@10: 0.07193948228710464loss/loss_ce@10: 0.07164867927453347[ep 10][lr 0.0001000][24.89s]loss/loss@11: 0.06749965641499749loss/loss_ce@11: 0.06725964279076646[ep 11][lr 0.0001000][27.03s]mae:122.93181818181819, mse:132.69568169082947, time:81.16495323181152, best mae:122.93181818181819metric/mae@6: 122.93181818181819metric/mse@6: 132.69568169082947loss/loss@12: 0.06675411032749311loss/loss_ce@12: 0.06657535186599171[ep 12][lr 0.0001000][25.87s]loss/loss@13: 0.06923471481376697loss/loss_ce@13: 0.06905678004795124[ep 13][lr 0.0001000][30.31s]mae:120.06818181818181, mse:128.7491394499043, time:81.31049466133118, best mae:120.06818181818181metric/mae@7: 120.06818181818181metric/mse@7: 128.7491394499043loss/loss@14: 0.06045277210484658loss/loss_ce@14: 0.06027606493305592[ep 14][lr 0.0001000][26.04s]loss/loss@15: 0.05838754725095535loss/loss_ce@15: 0.058209029961347816[ep 15][lr 0.0001000][28.02s]mae:98.81818181818181, mse:103.82079548798292, time:81.22397780418396, best mae:98.81818181818181metric/mae@8: 98.81818181818181metric/mse@8: 103.82079548798292loss/loss@16: 0.061075020611049635loss/loss_ce@16: 0.06091664349364619[ep 16][lr 0.0001000][26.12s]loss/loss@17: 0.06005818891294655loss/loss_ce@17: 0.05986710516588083[ep 17][lr 0.0001000][28.57s]mae:163.6439393939394, mse:258.72506467466405, time:81.48563718795776, best mae:98.81818181818181metric/mae@9: 163.6439393939394metric/mse@9: 258.72506467466405loss/loss@18: 0.05452905434908138loss/loss_ce@18: 0.054314737999072625[ep 18][lr 0.0001000][26.92s]loss/loss@19: 0.055487272876595696loss/loss_ce@19: 0.055321956385991404[ep 19][lr 0.0001000][29.04s]mae:90.10606060606061, mse:145.41523616557828, time:81.28022742271423, best mae:90.10606060606061metric/mae@10: 90.10606060606061metric/mse@10: 145.41523616557828loss/loss@20: 0.04835213218919105loss/loss_ce@20: 0.04818926932704118[ep 20][lr 0.0001000][25.18s]loss/loss@21: 0.05285184740251492loss/loss_ce@21: 0.05269265099472943[ep 21][lr 0.0001000][29.18s]mae:133.0151515151515, mse:229.75998675825065, time:81.80649590492249, best mae:90.10606060606061metric/mae@11: 133.0151515151515metric/mse@11: 229.75998675825065loss/loss@22: 0.05052773506631927loss/loss_ce@22: 0.050377262541876425[ep 22][lr 0.0001000][25.33s]loss/loss@23: 0.05209671417694716loss/loss_ce@23: 0.05195019158372094[ep 23][lr 0.0001000][28.73s]mae:454.0681818181818, mse:628.8237034336413, time:80.97771692276001, best mae:90.10606060606061metric/mae@12: 454.0681818181818metric/mse@12: 628.8237034336413loss/loss@24: 0.049570284717317135loss/loss_ce@24: 0.04942417346561948[ep 24][lr 0.0001000][26.72s]loss/loss@25: 0.050500705187755915loss/loss_ce@25: 0.05035688045124213[ep 25][lr 0.0001000][28.77s]mae:140.5, mse:234.2778071202881, time:80.7343213558197, best mae:90.10606060606061metric/mae@13: 140.5metric/mse@13: 234.2778071202881loss/loss@26: 0.04907771339640021loss/loss_ce@26: 0.04893610352975509[ep 26][lr 0.0001000][25.09s]loss/loss@27: 0.049561653005343584loss/loss_ce@27: 0.049418756098944756[ep 27][lr 0.0001000][26.95s]mae:239.74242424242425, mse:372.44802362615684, time:80.74750566482544, best mae:90.10606060606061metric/mae@14: 239.74242424242425metric/mse@14: 372.44802362615684loss/loss@28: 0.04549991679451768loss/loss_ce@28: 0.045353983395865986[ep 28][lr 0.0001000][26.84s]loss/loss@29: 0.044010398465962636loss/loss_ce@29: 0.043871778203913615[ep 29][lr 0.0001000][28.84s]mae:102.4090909090909, mse:155.38768719989795, time:81.46699714660645, best mae:90.10606060606061metric/mae@15: 102.4090909090909metric/mse@15: 155.38768719989795loss/loss@30: 0.04308289381128455loss/loss_ce@30: 0.04294955588522412[ep 30][lr 0.0001000][26.10s]loss/loss@31: 0.041603724738316875loss/loss_ce@31: 0.04147155532642963[ep 31][lr 0.0001000][29.04s]mae:193.22727272727272, mse:318.2684211146118, time:81.67432856559753, best mae:90.10606060606061metric/mae@16: 193.22727272727272metric/mse@16: 318.2684211146118loss/loss@32: 0.043613545470944946loss/loss_ce@32: 0.043479513931309895[ep 32][lr 0.0001000][26.64s]loss/loss@33: 0.039784110402540554loss/loss_ce@33: 0.039651146779457726[ep 33][lr 0.0001000][28.53s]mae:391.1060606060606, mse:596.3378135577082, time:80.92615389823914, best mae:90.10606060606061metric/mae@17: 391.1060606060606metric/mse@17: 596.3378135577082loss/loss@34: 0.03656810713517997loss/loss_ce@34: 0.03643334529451316[ep 34][lr 0.0001000][25.11s]loss/loss@35: 0.03883200515771196loss/loss_ce@35: 0.03869590549803679[ep 35][lr 0.0001000][28.14s]mae:462.2651515151515, mse:625.1880504974871, time:80.26260614395142, best mae:90.10606060606061metric/mae@18: 462.2651515151515metric/mse@18: 625.1880504974871loss/loss@36: 0.04449980211118975loss/loss_ce@36: 0.044336605720990706[ep 36][lr 0.0001000][25.84s]loss/loss@37: 0.04313872145518424loss/loss_ce@37: 0.04300115066063073[ep 37][lr 0.0001000][29.21s]mae:356.97727272727275, mse:513.53459504013, time:81.1429169178009, best mae:90.10606060606061metric/mae@19: 356.97727272727275metric/mse@19: 513.53459504013loss/loss@38: 0.03434813494187972loss/loss_ce@38: 0.03421078046547279[ep 38][lr 0.0001000][25.26s]loss/loss@39: 0.03834205664073428loss/loss_ce@39: 0.03820635566842698[ep 39][lr 0.0001000][27.99s]mae:353.2121212121212, mse:499.9456788673964, time:80.48815536499023, best mae:90.10606060606061metric/mae@20: 353.2121212121212metric/mse@20: 499.9456788673964loss/loss@40: 0.0
没有合适的资源?快使用搜索试试~ 我知道了~
基于p2pcrowdcounting的大豆p2p计数模型
共586个文件
txt:259个
png:258个
pyc:25个
5星 · 超过95%的资源 需积分: 0 25 下载量 86 浏览量
2023-07-18
09:16:03
上传
评论 2
收藏 817.23MB RAR 举报
温馨提示
论文:Improved Field-Based Soybean Seed Counting and Localization with Feature Level Considered中的大豆计数模型,利用pycharm复现,相对开源代码,本次复现做了一些微小的调整,这有助于更加直观的理解代码,温馨提示,自己在复现本代码的时候,要注意参数和路径的设置,要将本模型用于其他作物的时候,请参考模型中的数据自己进行数据制作,并注意代码中的一些细节问题,如png或者jpg格式或者一些别的小细节。
资源推荐
资源详情
资源评论
收起资源包目录
基于p2pcrowdcounting的大豆p2p计数模型 (586个子文件)
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
.gitignore 47B
p2p_Soybean.iml 491B
DSC05064.JPG 14.57MB
DSC05065.JPG 14.5MB
DSC05068.JPG 14.32MB
DSC05070.JPG 14.28MB
DSC05069.JPG 14.25MB
DSC05055.JPG 14.19MB
DSC05066.JPG 14.16MB
DSC05067.JPG 14.16MB
DSC05056.JPG 14.13MB
DSC05071.JPG 14.08MB
DSC05072.JPG 14.05MB
DSC05057.JPG 13.9MB
DSC05053.JPG 13.87MB
DSC05052.JPG 13.81MB
DSC05054.JPG 13.77MB
DSC05073.JPG 13.51MB
events.out.tfevents.1689303233.king 28KB
E11E-E10E_DSC04696_b_6_E10E_b_1.png 5.16MB
D12W-D13W_DSC04503_b_3_D13W_b_3.png 4.66MB
E09E-E08E_DSC04670_b_9_E08E_b_4.png 4.02MB
E11E-E10E_DSC04576_a_6_E10E_a_1.png 3.81MB
E09E-E08E_DSC04600_a_9_E08E_a_4.png 3.76MB
E12E-E13E_DSC04720_b_5_E13E_b_5.png 3.74MB
D12W-D13W_DSC04501_b_4_D13W_b_4.png 3.72MB
D12W-D13W_DSC04500_b_5_D13W_b_5.png 3.67MB
D12E-D13E_DSC04509_a_1_D13E_a_1.png 3.6MB
D12E-D13E_DSC04546_b_2_D13E_b_2.png 3.36MB
E11E-E10E_DSC04583_a_9_E10E_a_4.png 3.32MB
E11E-E10E_DSC04572_a_2_E11E_a_2.png 3.25MB
D12E-D13E_DSC04509_a_2_D13E_a_2.png 3.23MB
D12W-D13W_DSC04503_b_2_D13W_b_2.png 3.22MB
P06W-P07W_DSC04995_a_8_P07W_a_3.png 3.13MB
E12E-E13E_DSC04557_a_5_E13E_a_5.png 3.09MB
E12E-E13E_DSC04554_a_4_E13E_a_4.png 3.07MB
E11E-E10E_DSC04572_a_1_E11E_a_1.png 3.05MB
D12E-D13E_DSC04509_a_3_D13E_a_3.png 3.04MB
P06W-P07W_DSC05014_b_6_P07W_b_1.png 2.99MB
D12E-D13E_DSC04520_a_8_D12E_a_3.png 2.9MB
P06W-P07W_DSC04993_a_7_P07W_a_2.png 2.86MB
D12W-D13W_DSC04505_b_1_D13W_b_1.png 2.84MB
D12W-D13W_DSC04472_a_5_D13W_a_5.png 2.79MB
E22_DSC04764_a_2_E22_a_2.png 2.77MB
P06W-P07W_DSC05014_b_7_P07W_b_2.png 2.76MB
D12E-D13E_DSC04520_a_6_D12E_a_1.png 2.76MB
P06W-P07W_DSC04993_a_6_P07W_a_1.png 2.73MB
D12E-D13E_DSC04520_a_7_D12E_a_2.png 2.73MB
P06W-P07W_DSC05012_b_6_P07W_b_1.png 2.7MB
D12W-D13W_DSC04505_b_2_D13W_b_2.png 2.61MB
E22_DSC04767_a_5_E22_a_5.png 2.55MB
E12E-E13E_DSC04564_a_9_E12E_a_4.png 2.55MB
D12E-D13E_DSC04516_a_6_D12E_a_1.png 2.51MB
E22_DSC04764_a_1_E22_a_1.png 2.5MB
E12E-E13E_DSC04720_b_4_E13E_b_4.png 2.48MB
E11E-E10E_DSC04691_b_9_E10E_b_4.png 2.48MB
E22_DSC04767_a_4_E22_a_4.png 2.46MB
P06W-P07W_DSC04997_a_7_P07W_a_2.png 2.45MB
P06W-P07W_DSC05001_a_9_P07W_a_4.png 2.43MB
D12W-D13W_DSC04476_a_6_D12W_a_1.png 2.42MB
P06W-P07W_DSC04995_a_7_P07W_a_2.png 2.4MB
P06W-P07W_DSC05020_b_8_P07W_b_3.png 2.39MB
D12E-D13E_DSC04524_a_9_D12E_a_4.png 2.38MB
P06W-P07W_DSC05018_b_8_P07W_b_3.png 2.36MB
L11E_DSC04936_b_5_L11E_b_5.png 2.35MB
E22_DSC04764_a_3_E22_a_3.png 2.35MB
D12E-D13E_DSC04537_b_7_D12E_b_2.png 2.34MB
P06W-P07W_DSC05018_b_7_P07W_b_2.png 2.32MB
P06W-P07W_DSC05001_a_8_P07W_a_3.png 2.32MB
E12E-E13E_DSC04714_b_7_E12E_b_2.png 2.28MB
E09E-E08E_DSC04598_a_6_E08E_a_1.png 2.28MB
J24E_DSC04853_b_1_J24E_b_1.png 2.27MB
D12E-D13E_DSC04546_b_1_D13E_b_1.png 2.26MB
D12E-D13E_DSC04537_b_6_D12E_b_1.png 2.22MB
P06W-P07W_DSC04997_a_8_P07W_a_3.png 2.18MB
G19W-G18W_DSC04793_a_8_G19W_a_3.png 2.17MB
G19W-G18W_DSC04793_a_7_G19W_a_2.png 2.17MB
E22_DSC04777_b_2_E22_b_2.png 2.17MB
P06W-P07W_DSC05016_b_7_P07W_b_2.png 2.15MB
K22W-K23W_DSC04893_a_7_K22W_a_2.png 2.15MB
G19W-G18W_DSC04790_a_4_G18W_a_4.png 2.14MB
E22_DSC04774_b_5_E22_b_5.png 2.13MB
E09E-E08E_DSC04672_b_7_E08E_b_2.png 2.12MB
E12E-E13E_DSC04557_a_6_E12E_a_1.png 2.12MB
G19W-G18W_DSC04787_a_4_G18W_a_4.png 2.11MB
D12W-D13W_DSC04481_a_8_D12W_a_3.png 2.1MB
G19W-G18W_DSC04815_b_2_G18W_b_2.png 2.1MB
D12E-D13E_DSC04546_b_3_D13E_b_3.png 2.09MB
J24E_DSC04856_b_2_J24E_b_2.png 2.08MB
G19W-G18W_DSC04813_b_2_G18W_b_2.png 2.07MB
E22_DSC04774_b_4_E22_b_4.png 2.05MB
G19W-G18W_DSC04787_a_5_G18W_a_5.png 2.02MB
G19W-G18W_DSC04784_a_2_G18W_a_2.png 2.02MB
P06W-P07W_DSC05020_b_9_P07W_b_4.png 2.01MB
E12E-E13E_DSC04560_a_7_E12E_a_2.png 2.01MB
L11E_DSC04934_b_4_L11E_b_4.png 2.01MB
共 586 条
- 1
- 2
- 3
- 4
- 5
- 6
资源评论
- 墨骅2023-11-10#完美解决问题 #内容详尽 #全网独家 #注释完整
追忆苔上雪
- 粉丝: 1w+
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 5G模组升级刷模块救砖以及5G模组资料路由器固件
- C183579-123578-c1235789.jpg
- Qt5.14 绘画板 Qt Creator C++项目
- python实现Excel表格合并
- Java实现读取Excel批量发送邮件.zip
- 【java毕业设计】商城后台管理系统源码(springboot+vue+mysql+说明文档).zip
- 【java毕业设计】开发停车位管理系统(调用百度地图API)源码(springboot+vue+mysql+说明文档).zip
- 星耀软件库(升级版).apk.1
- 基于Django后端和Vue前端的多语言购物车项目设计源码
- 基于Python与Vue的浮光在线教育平台源码设计
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功