## EdgeKE
This is the source code for our paper: **EdgeKE: An On-Demand Deep Learning IoT System for Cognitive Big Data on Industrial Edge Devices**. A brief introduction of this work is as follows:
> Motivated by the prospects of 5G communications and industrial Internet of Things (IoT), recent years have seen the rise of a new computing paradigm, edge computing, which shifts data analytics to network edges that are at the proximity of big data sources. Although Deep Neural Networks (DNNs) have been extensively used in many platforms and scenarios, they are usually both compute and memory intensive, thus difficult to be deployed on resource-limited edge devices and in performance-demanding edge applications. Hence, there is an urgent need for techniques that enable DNN models to fit into edge devices, while ensuring acceptable execution costs and inference accuracy. This paper proposes an on-demand DNN model inference system for industrial edge devices, called Knowledge distillation and Early-exit on Edge (EdgeKE). It focuses on two design knobs: (1) DNN compression based on knowledge distillation, which trains the compact edge models under the supervision of large complex models for improving accuracy and speed; (2) DNN acceleration based on early-exit, which provides flexible choices for satisfying distinct latency or accuracy requirements from edge applications. By extensive evaluations on the CIFAR100 dataset and across three state-of-art edge devices, experimental results demonstrate that EdgeKE significantly outperforms the baseline models in terms of inference latency and memory footprint, while maintaining competitive classification accuracy. Furthermore, EdgeKE is verified to be efficiently adaptive to the application requirements on inference performance. The accuracy loss is within 4.84% under various latency constraints, and the speedup ratio is up to 3.30$\times$ under various accuracy requirements.
This work has been published by IEEE Transactions on Industrial Informatics. Click [here](https://ieeexplore.ieee.org/document/9294146/) for our paper.
## Required software
PyTorch
## Citation
@ARTICLE{9294146,
author={Fang, Weiwei and Xue, Feng and Ding, Yi and Xiong, Naixue and Leung, Victor C. M.},
journal={IEEE Transactions on Industrial Informatics},
title={EdgeKE: An On-Demand Deep Learning IoT System for Cognitive Big Data on Industrial Edge Devices},
year={2021},
volume={17},
number={9},
pages={6144-6152},
doi={10.1109/TII.2020.3044930}
}
## Contact
Feng Xue (17120431@bjtu.edu.cn)
> Please note that the open source code in this repository was mainly completed by the graduate student author during his master's degree study. Since the author did not continue to engage in scientific research work after graduation, it is difficult to continue to maintain and update these codes. We sincerely apologize that these codes are for reference only.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
EdgeKE: An On-Demand Deep Learning IoT System for Cognitive Big Data on Industrial Edge Devices - - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
资源推荐
资源详情
资源评论
收起资源包目录
EdgeKE-main.zip (28个子文件)
EdgeKE-main
.idea
.name 9B
webServers.xml 604B
workspace.xml 46KB
misc.xml 307B
modules.xml 296B
deployment.xml 401B
Branch_KD.iml 450B
datasets
get_cifar_100.py 1KB
__pycache__
get_minst_data.cpython-36.pyc 892B
get_cifar_100.cpython-36.pyc 1KB
get_cifar_10.cpython-36.pyc 1KB
new_test.py 7KB
temp.py 13KB
model
ResNet
get_inference_model.py 10KB
ResNet.py 4KB
get_ResNet_model.py 8KB
__pycache__
get_inference_model.cpython-36.pyc 9KB
ResNet.cpython-36.pyc 4KB
get_ResNet_model.cpython-36.pyc 6KB
readme.txt 53B
functions
my_functions.py 13KB
branch_functions.py 50KB
__pycache__
branch_functions.cpython-36.pyc 20KB
my_functions.cpython-36.pyc 8KB
main
ResNet
ResNet_KD_Branch.py 8KB
ResNet_KD.py 7KB
test.py 5KB
README.md 3KB
共 28 条
- 1
资源评论
机智的程序员zero
- 粉丝: 2410
- 资源: 4799
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- java-leetcode题解之Populating Next Right Pointers in Each Node.java
- java-leetcode题解之Plus One.java
- java-leetcode题解之Play with Chips.java
- java-leetcode题解之PIO.java
- java-leetcode题解之Permutation Sequence.java
- java-leetcode题解之Permutation in String.java
- java-leetcode题解之Perfect Squares.java
- java-leetcode题解之Path with Maximum Gold.java
- java-leetcode题解之Path Sum III.java
- 表单表格与选择器高级资源包
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功