摘要:行人检测是汽车自动驾驶的基础技术之一。基于深度神经网络模型的行人检测方法取
得的效果已经远超于使用传统特征经行识别得到的效果。仿生物视觉系统的卷积神经网络作为
深度学习的重要组成、在图像、语音等领域得到了成功应用.其局部感受野、权值共享和降采样
三个特点使之成为智能机器视觉领域的研究热点 .通过增加网络层数所构造的深层神经网络使
机器能够获得抽象概念能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新
高潮.本文回顾了神经网络的发展历程,综述了其当前研究进展以及存在的问题,展望了未来神
经网络的发展方向.
Abstract:Pedestrian detection is one of the basic technologies of unmanned vehicles.
The pedestrian detection method based on the deep neural network model has achieved
much more effect than the traditional one。 Convolutional neural network which imitates
the biological vision system has made great success on image and audio, which is the
important component of deep learning。 Local receptive field, sharing weights and down
sampling are three important characteristics of CNN which lead it to be the hotspot
in the field of intelligent machine vision.With the increasing number of layers, deep
neural network entitles machines the capability to capture “abstract concepts” and
it has achieved great success in various fields, leading a new and advanced trend in
neural network research 。 This paper recalls the development of neural network ,
summarizes the latest progress and existing problems considering neural network and
评论0
最新资源