datasets/images/00000.jpg
datasets/images/00001.jpg
datasets/images/0000100.jpg
datasets/images/00001000.jpg
datasets/images/00001001.jpg
datasets/images/00001002.jpg
datasets/images/00001004.jpg
datasets/images/00001005.jpg
datasets/images/00001006.jpg
datasets/images/00001008.jpg
datasets/images/00001009.jpg
datasets/images/0000101.jpg
datasets/images/00001011.jpg
datasets/images/00001012.jpg
datasets/images/00001014.jpg
datasets/images/00001015.jpg
datasets/images/00001016.jpg
datasets/images/00001017.jpg
datasets/images/00001018.jpg
datasets/images/0000102.jpg
datasets/images/00001020.jpg
datasets/images/00001021.jpg
datasets/images/00001022.jpg
datasets/images/00001023.jpg
datasets/images/00001024.jpg
datasets/images/00001025.jpg
datasets/images/00001026.jpg
datasets/images/00001028.jpg
datasets/images/00001029.jpg
datasets/images/0000103.jpg
datasets/images/00001030.jpg
datasets/images/00001031.jpg
datasets/images/00001032.jpg
datasets/images/00001033.jpg
datasets/images/00001034.jpg
datasets/images/00001035.jpg
datasets/images/00001038.jpg
datasets/images/00001040.jpg
datasets/images/00001041.jpg
datasets/images/00001043.jpg
datasets/images/00001045.jpg
datasets/images/00001046.jpg
datasets/images/00001047.jpg
datasets/images/00001048.jpg
datasets/images/00001049.jpg
datasets/images/0000105.jpg
datasets/images/00001050.jpg
datasets/images/00001051.jpg
datasets/images/00001052.jpg
datasets/images/00001053.jpg
datasets/images/00001054.jpg
datasets/images/00001056.jpg
datasets/images/00001058.jpg
datasets/images/00001059.jpg
datasets/images/0000106.jpg
datasets/images/00001061.jpg
datasets/images/00001062.jpg
datasets/images/00001063.jpg
datasets/images/00001064.jpg
datasets/images/00001065.jpg
datasets/images/00001066.jpg
datasets/images/00001067.jpg
datasets/images/00001069.jpg
datasets/images/0000107.jpg
datasets/images/00001071.jpg
datasets/images/00001074.jpg
datasets/images/00001075.jpg
datasets/images/00001077.jpg
datasets/images/00001078.jpg
datasets/images/00001079.jpg
datasets/images/0000108.jpg
datasets/images/00001080.jpg
datasets/images/00001081.jpg
datasets/images/00001082.jpg
datasets/images/00001083.jpg
datasets/images/00001084.jpg
datasets/images/00001085.jpg
datasets/images/00001086.jpg
datasets/images/00001088.jpg
datasets/images/0000109.jpg
datasets/images/00001091.jpg
datasets/images/00001094.jpg
datasets/images/00001096.jpg
datasets/images/00001098.jpg
datasets/images/00001099.jpg
datasets/images/000011.jpg
datasets/images/0000110.jpg
datasets/images/00001100.jpg
datasets/images/00001101.jpg
datasets/images/00001102.jpg
datasets/images/00001103.jpg
datasets/images/00001104.jpg
datasets/images/00001106.jpg
datasets/images/00001107.jpg
datasets/images/00001108.jpg
datasets/images/00001109.jpg
datasets/images/00001110.jpg
datasets/images/00001111.jpg
datasets/images/00001112.jpg
datasets/images/00001118.jpg
datasets/images/00001119.jpg
datasets/images/0000112.jpg
datasets/images/00001120.jpg
datasets/images/00001121.jpg
datasets/images/00001122.jpg
datasets/images/00001123.jpg
datasets/images/00001124.jpg
datasets/images/00001126.jpg
datasets/images/00001127.jpg
datasets/images/00001128.jpg
datasets/images/00001129.jpg
datasets/images/0000113.jpg
datasets/images/00001130.jpg
datasets/images/00001131.jpg
datasets/images/00001132.jpg
datasets/images/00001133.jpg
datasets/images/00001134.jpg
datasets/images/00001137.jpg
datasets/images/00001138.jpg
datasets/images/00001139.jpg
datasets/images/00001140.jpg
datasets/images/00001141.jpg
datasets/images/00001142.jpg
datasets/images/00001143.jpg
datasets/images/00001144.jpg
datasets/images/00001145.jpg
datasets/images/00001146.jpg
datasets/images/00001147.jpg
datasets/images/00001148.jpg
datasets/images/00001149.jpg
datasets/images/0000115.jpg
datasets/images/00001150.jpg
datasets/images/00001151.jpg
datasets/images/00001152.jpg
datasets/images/00001154.jpg
datasets/images/00001155.jpg
datasets/images/00001156.jpg
datasets/images/00001157.jpg
datasets/images/00001159.jpg
datasets/images/0000116.jpg
datasets/images/00001160.jpg
datasets/images/00001161.jpg
datasets/images/00001162.jpg
datasets/images/00001164.jpg
datasets/images/00001166.jpg
datasets/images/00001168.jpg
datasets/images/00001169.jpg
datasets/images/00001170.jpg
datasets/images/00001171.jpg
datasets/images/00001172.jpg
datasets/images/00001173.jpg
datasets/images/00001175.jpg
datasets/images/00001176.jpg
datasets/images/00001177.jpg
datasets/images/00001178.jpg
datasets/images/00001179.jpg
datasets/images/0000118.jpg
datasets/images/00001180.jpg
datasets/images/00001181.jpg
datasets/images/00001182.jpg
datasets/images/00001183.jpg
datasets/images/00001184.jpg
datasets/images/00001185.jpg
datasets/images/00001186.jpg
datasets/images/00001187.jpg
datasets/images/00001188.jpg
datasets/images/00001190.jpg
datasets/images/00001191.jpg
datasets/images/00001192.jpg
datasets/images/00001194.jpg
datasets/images/00001195.jpg
datasets/images/00001197.jpg
datasets/images/00001198.jpg
datasets/images/00001199.jpg
datasets/images/000012.jpg
datasets/images/00001200.jpg
datasets/images/00001201.jpg
datasets/images/00001202.jpg
datasets/images/00001203.jpg
datasets/images/00001204.jpg
datasets/images/00001205.jpg
datasets/images/00001206.jpg
datasets/images/00001207.jpg
datasets/images/00001208.jpg
datasets/images/00001209.jpg
datasets/images/0000121.jpg
datasets/images/00001210.jpg
datasets/images/00001211.jpg
datasets/images/00001212.jpg
datasets/images/00001213.jpg
datasets/images/00001214.jpg
datasets/images/00001217.jpg
datasets/images/00001219.jpg
datasets/images/0000122.jpg
datasets/images/00001220.jpg
datasets/images/00001222.jpg
datasets/images/00001224.jpg
datasets/images/00001226.jpg
datasets/images/00001227.jpg
datasets/images/00001228.jpg
datasets/images/00001229.jpg
datasets/images/00001230.jpg
datasets/images/00001231.jpg
datasets/images/00001232.jpg
datasets/images/00001234.jpg
datasets/images/00001236.jpg
datasets/images/00001237.jpg
datasets/images/00001238.jpg
datasets/images/00001239.jpg
datasets/images/0000124.jpg
datasets/images/00001240.jpg
datasets/images/00001242.jpg
datasets/images/00001243.jpg
datasets/images/00001244.jpg
datasets/images/00001245.jpg
datasets/images/00001246.jpg
datasets/images/00001248.jpg
datasets/images/00001249.jpg
datasets/images/0000125.jpg
datasets/images/00001250.jpg
datasets/images/00001252.jpg
datasets/images/00001253.jpg
datasets/images/00001254.jpg
datasets/images/00001255.jpg
datasets/images/00001256.jpg
datasets/images/00001258.jpg
datasets/images/00001259.jpg
datasets/images/0000126.jpg
datasets/images/00001260.jpg
datasets/images/00001261.jpg
datasets/images/00001262.jpg
datasets/images/00001266.jpg
datasets/images/00001268.jpg
datasets/images/00001269.jpg
datasets/images/0000127.jpg
datasets/images/00001273.jpg
datasets/images/00001274.jpg
datasets/images/00001275.jpg
datasets/images/00001277.jpg
datasets/images/00001279.jpg
datasets/images/0000128.jpg
datasets/images/00001280.jpg
datasets/images/00001283.jpg
datasets/images/00001284.jpg
datasets/images/00001288.jpg
datasets/images/00001289.jpg
datasets/images/0000129.jpg
datasets/images/00001291.jpg
datasets/images/00001293.jpg
datasets/images/00001294.jpg
datasets/images/00001295.jpg
datasets/images/00001296.jpg
datasets/images/00001297.jpg
datasets/images/00001298.jpg
datasets/images/000013.jpg
datasets/images/00001301.jpg
datasets/images/00001302.jpg
datasets/images/00001305.jpg
datasets/images/00001306.jpg
datasets/images/00001307.jpg
datasets/images/00001308.jpg
datasets/images/00001310.jpg
datasets/images/00001311.jpg
datasets/images/00001312.jpg
datasets/images/00001313.jpg
datasets/images/00001314.jpg
datasets/images/00001315.jpg
datasets/images/00001316.j
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
1、YOLO铁轨裂纹检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测。 2、附赠YOLO环境搭建、训练案例教程和数据集划分脚本,可以根据需求自行划分训练集、验证集、测试集。 3、数据集详情展示和更多数据集下载:https://blog.csdn.net/m0_64879847/article/details/132301975
资源推荐
资源详情
资源评论
收起资源包目录
YOLO铁轨裂纹检测数据集(含5000张图片)+对应voc、coco和yolo三种格式标签+划分脚本+训练教程.rar (2000个子文件)
1. 三个数据集划分脚本使用说明.html 46KB
2、YOLO环境搭建Linux版本.html 40KB
3、YOLO训练教程Linux版本(根据案例修改训练自己的数据集).html 19KB
2、YOLO训练教程Windows版本(根据案例修改训练自己的数据集).html 14KB
1、YOLO环境搭建Windows版本.html 13KB
1、Linux之Ubuntu环境安装教程.html 8KB
训练集、验证集、测试集划分脚本(图片标签划分写入新文件夹).py 3KB
训练集、验证集划分脚本(图片标签划分写入新文件夹).py 3KB
split_train_val生成ImageSets下txt文件划分脚本.py 1KB
train_list.txt 116KB
trainval_list.txt 29KB
test_list.txt 23KB
val_list.txt 6KB
requirements.txt 892B
00001466.xml 21KB
00004953.xml 16KB
0000725.xml 14KB
0000701.xml 14KB
00004799.xml 14KB
00003006.xml 14KB
00004398.xml 14KB
0000496.xml 13KB
00001506.xml 13KB
00003129.xml 13KB
00003845.xml 13KB
0000780.xml 13KB
00004788.xml 12KB
00003517.xml 12KB
0000280.xml 12KB
0000966.xml 12KB
00004718.xml 12KB
00002715.xml 12KB
00004806.xml 12KB
00002352.xml 12KB
000026.xml 12KB
0000108.xml 12KB
00004576.xml 11KB
00001604.xml 11KB
00004478.xml 11KB
00004448.xml 11KB
00002215.xml 11KB
0000181.xml 11KB
00001482.xml 11KB
00002505.xml 11KB
0000460.xml 11KB
00003207.xml 11KB
00002326.xml 10KB
00001077.xml 10KB
00004400.xml 10KB
00004710.xml 10KB
00002327.xml 10KB
0000447.xml 10KB
00001109.xml 10KB
00001035.xml 10KB
00001537.xml 10KB
0000703.xml 10KB
00001125.xml 10KB
00004700.xml 10KB
00004191.xml 10KB
00004727.xml 10KB
00003314.xml 10KB
00004840.xml 10KB
00002790.xml 10KB
00003586.xml 10KB
00001595.xml 10KB
0000323.xml 10KB
0000720.xml 10KB
00001845.xml 10KB
00004477.xml 10KB
00002765.xml 10KB
0000341.xml 10KB
00004367.xml 10KB
00001847.xml 9KB
00004571.xml 9KB
00001960.xml 9KB
0000228.xml 9KB
00004548.xml 9KB
00002465.xml 9KB
00004734.xml 9KB
00002641.xml 9KB
00003322.xml 9KB
00003946.xml 9KB
00003395.xml 9KB
00002293.xml 9KB
00004065.xml 9KB
00003565.xml 9KB
00001588.xml 9KB
00002941.xml 9KB
00001231.xml 9KB
0000154.xml 9KB
00003478.xml 9KB
00002517.xml 9KB
00004623.xml 9KB
00001905.xml 9KB
0000508.xml 9KB
00002652.xml 9KB
00003534.xml 9KB
00004296.xml 9KB
0000949.xml 9KB
00002033.xml 9KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- weixin_489918732024-09-30资源内容详实,描述详尽,解决了我的问题,受益匪浅,学到了。
- 行走的小部落2024-01-27资源不错,对我启发很大,获得了新的灵感,受益匪浅。
- m0_449890002024-09-17资源内容详细全面,与描述一致,对我很有用,有一定的使用价值。
YOLO数据集工作室
- 粉丝: 730
- 资源: 1598
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 电影购票系统-Java Web项目
- SPD-Conv-main.zip
- 使用Python和Pygame库创建新年烟花动画效果
- chapter9.zip
- 安居客Python爬虫代码.zip
- 企业可持续发展性数据集,ESG数据集,公司可持续发展性数据(可用于多种企业可持续性研究场景)
- 车辆轨迹自适应预瞄跟踪控制和自适应p反馈联合控制,自适应预苗模型和基于模糊p控制均在simulink中搭建 个人觉得跟踪效果相比模糊pid效果好很多,轨迹跟踪过程,转角控制平滑自然,车速在36到72
- 数据分析-49-客户细分-K-Means聚类分析
- TIA PORTAL V18 UPD5更新包(2024.10最新)-链接地址.txt
- 使用Python和Pygame实现圣诞节动画效果
- 自动驾驶不同工况避障模型(perscan、simulink、carsim联仿),能够避开预设的(静态)障碍物
- 100个情侣头像,唯美手绘情侣头像
- 国际象棋检测10-YOLO(v5至v9)、COCO、CreateML、Paligemma数据集合集.rar
- 2024~2025(1)Oracle数据库技术A卷-22软单、软嵌.doc
- 睡眠健康与生活方式数据集,睡眠和生活习惯关联分析(睡眠影响因素)
- 浪漫节日代码 - 爱心代码、圣诞树代码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功