datasets/images/100.jpg
datasets/images/1002.jpg
datasets/images/1003.jpg
datasets/images/1004.jpg
datasets/images/1005.jpg
datasets/images/1006.jpg
datasets/images/1007.jpg
datasets/images/1009.jpg
datasets/images/101.jpg
datasets/images/1010.jpg
datasets/images/1011.jpg
datasets/images/1012.jpg
datasets/images/1013.jpg
datasets/images/1014.jpg
datasets/images/1015.jpg
datasets/images/1017.jpg
datasets/images/1018.jpg
datasets/images/1019.jpg
datasets/images/1020.jpg
datasets/images/1021.jpg
datasets/images/1022.jpg
datasets/images/1024.jpg
datasets/images/1026.jpg
datasets/images/1027.jpg
datasets/images/1028.jpg
datasets/images/103.jpg
datasets/images/1030.jpg
datasets/images/1031.jpg
datasets/images/1032.jpg
datasets/images/1033.jpg
datasets/images/1034.jpg
datasets/images/1035.jpg
datasets/images/1036.jpg
datasets/images/1038.jpg
datasets/images/1039.jpg
datasets/images/1040.jpg
datasets/images/1041.jpg
datasets/images/1042.jpg
datasets/images/1043.jpg
datasets/images/1044.jpg
datasets/images/1045.jpg
datasets/images/1046.jpg
datasets/images/1047.jpg
datasets/images/1050.jpg
datasets/images/1052.jpg
datasets/images/1054.jpg
datasets/images/1055.jpg
datasets/images/1056.jpg
datasets/images/1057.jpg
datasets/images/1058.jpg
datasets/images/1059.jpg
datasets/images/106.jpg
datasets/images/1060.jpg
datasets/images/1061.jpg
datasets/images/1062.jpg
datasets/images/1063.jpg
datasets/images/1065.jpg
datasets/images/1067.jpg
datasets/images/1068.jpg
datasets/images/1069.jpg
datasets/images/1070.jpg
datasets/images/1071.jpg
datasets/images/1073.jpg
datasets/images/1074.jpg
datasets/images/1075.jpg
datasets/images/1076.jpg
datasets/images/1077.jpg
datasets/images/1078.jpg
datasets/images/1079.jpg
datasets/images/108.jpg
datasets/images/1080.jpg
datasets/images/1081.jpg
datasets/images/1083.jpg
datasets/images/1084.jpg
datasets/images/1086.jpg
datasets/images/1088.jpg
datasets/images/1089.jpg
datasets/images/109.jpg
datasets/images/1090.jpg
datasets/images/1091.jpg
datasets/images/1092.jpg
datasets/images/1093.jpg
datasets/images/1094.jpg
datasets/images/1095.jpg
datasets/images/1096.jpg
datasets/images/1097.jpg
datasets/images/1098.jpg
datasets/images/1099.jpg
datasets/images/11.jpg
datasets/images/1101.jpg
datasets/images/1102.jpg
datasets/images/1103.jpg
datasets/images/1105.jpg
datasets/images/1106.jpg
datasets/images/1107.jpg
datasets/images/1108.jpg
datasets/images/111.jpg
datasets/images/1110.jpg
datasets/images/1111.jpg
datasets/images/1113.jpg
datasets/images/1114.jpg
datasets/images/1116.jpg
datasets/images/1118.jpg
datasets/images/1119.jpg
datasets/images/1121.jpg
datasets/images/1122.jpg
datasets/images/1123.jpg
datasets/images/1124.jpg
datasets/images/1125.jpg
datasets/images/1127.jpg
datasets/images/1128.jpg
datasets/images/1129.jpg
datasets/images/113.jpg
datasets/images/1131.jpg
datasets/images/1132.jpg
datasets/images/1133.jpg
datasets/images/1135.jpg
datasets/images/1138.jpg
datasets/images/1139.jpg
datasets/images/114.jpg
datasets/images/1140.jpg
datasets/images/1141.jpg
datasets/images/1142.jpg
datasets/images/1144.jpg
datasets/images/1145.jpg
datasets/images/1146.jpg
datasets/images/1148.jpg
datasets/images/1149.jpg
datasets/images/115.jpg
datasets/images/1150.jpg
datasets/images/1151.jpg
datasets/images/1153.jpg
datasets/images/1154.jpg
datasets/images/1155.jpg
datasets/images/1156.jpg
datasets/images/1157.jpg
datasets/images/1158.jpg
datasets/images/1159.jpg
datasets/images/116.jpg
datasets/images/1160.jpg
datasets/images/1165.jpg
datasets/images/1166.jpg
datasets/images/1167.jpg
datasets/images/1168.jpg
datasets/images/1169.jpg
datasets/images/117.jpg
datasets/images/1170.jpg
datasets/images/1171.jpg
datasets/images/1172.jpg
datasets/images/1173.jpg
datasets/images/1174.jpg
datasets/images/1175.jpg
datasets/images/1176.jpg
datasets/images/1177.jpg
datasets/images/1178.jpg
datasets/images/1179.jpg
datasets/images/118.jpg
datasets/images/1180.jpg
datasets/images/1181.jpg
datasets/images/1182.jpg
datasets/images/1183.jpg
datasets/images/1184.jpg
datasets/images/1185.jpg
datasets/images/1187.jpg
datasets/images/1188.jpg
datasets/images/119.jpg
datasets/images/1190.jpg
datasets/images/1191.jpg
datasets/images/1192.jpg
datasets/images/1193.jpg
datasets/images/1194.jpg
datasets/images/1195.jpg
datasets/images/1196.jpg
datasets/images/1197.jpg
datasets/images/1198.jpg
datasets/images/1199.jpg
datasets/images/12.jpg
datasets/images/1200.jpg
datasets/images/1201.jpg
datasets/images/1202.jpg
datasets/images/1204.jpg
datasets/images/1206.jpg
datasets/images/1207.jpg
datasets/images/1208.jpg
datasets/images/1209.jpg
datasets/images/121.jpg
datasets/images/1210.jpg
datasets/images/1211.jpg
datasets/images/1212.jpg
datasets/images/1213.jpg
datasets/images/1217.jpg
datasets/images/1218.jpg
datasets/images/1219.jpg
datasets/images/122.jpg
datasets/images/1220.jpg
datasets/images/1221.jpg
datasets/images/1222.jpg
datasets/images/1223.jpg
datasets/images/1224.jpg
datasets/images/1226.jpg
datasets/images/1228.jpg
datasets/images/1229.jpg
datasets/images/123.jpg
datasets/images/1230.jpg
datasets/images/1232.jpg
datasets/images/1234.jpg
datasets/images/1235.jpg
datasets/images/1236.jpg
datasets/images/1237.jpg
datasets/images/1238.jpg
datasets/images/1239.jpg
datasets/images/1240.jpg
datasets/images/1241.jpg
datasets/images/1242.jpg
datasets/images/1243.jpg
datasets/images/1245.jpg
datasets/images/1246.jpg
datasets/images/1247.jpg
datasets/images/1248.jpg
datasets/images/1249.jpg
datasets/images/125.jpg
datasets/images/1250.jpg
datasets/images/1251.jpg
datasets/images/1252.jpg
datasets/images/1253.jpg
datasets/images/1255.jpg
datasets/images/1257.jpg
datasets/images/1258.jpg
datasets/images/1259.jpg
datasets/images/126.jpg
datasets/images/1260.jpg
datasets/images/1261.jpg
datasets/images/1262.jpg
datasets/images/1263.jpg
datasets/images/1264.jpg
datasets/images/1266.jpg
datasets/images/1267.jpg
datasets/images/1268.jpg
datasets/images/1269.jpg
datasets/images/127.jpg
datasets/images/1270.jpg
datasets/images/1271.jpg
datasets/images/1276.jpg
datasets/images/1277.jpg
datasets/images/1278.jpg
datasets/images/1279.jpg
datasets/images/128.jpg
datasets/images/1280.jpg
datasets/images/1281.jpg
datasets/images/1282.jpg
datasets/images/1283.jpg
datasets/images/1284.jpg
datasets/images/1285.jpg
datasets/images/1286.jpg
datasets/images/1287.jpg
datasets/images/1289.jpg
datasets/images/129.jpg
datasets/images/1290.jpg
datasets/images/1291.jpg
datasets/images/1292.jpg
datasets/images/1295.jpg
datasets/images/1297.jpg
datasets/images/1298.jpg
datasets/images/1299.jpg
datasets/images/13.jpg
datasets/images/130.jpg
datasets/images/1300.jpg
datasets/images/1301.jpg
datasets/images/1303.jpg
datasets/images/1304.jpg
datasets/images/1305.jpg
datasets/images/1306.jpg
datasets/images/1307.jpg
datasets/images/131.jpg
datasets/images/1312.jpg
datasets/images/1313.jpg
datasets/images/1314.jpg
datasets/images/1315.jpg
datasets/images/1316.jpg
datasets/images/1317.jpg
datasets/images/1319.jpg
datasets/images/132.jpg
datasets/images/1320.jpg
datasets/images/1323.jpg
datasets/images/1325.jpg
datasets/images/1326.jpg
datasets/images/1327.jpg
datasets/images/1329.jpg
datasets/images/1330.jpg
datasets/images/1331.jpg
datasets/images/1332.jpg
datasets/images/1334.jpg
datasets/images/1335.jpg
datasets/images/1337.jpg
datasets/images/1338.jpg
datasets/images/1339.jpg
datasets/images/134.jpg
datasets/images/1341.jpg
datasets/images/1342.jpg
datasets/images/1343.jpg
datasets/images/1344.jpg
datasets/images/1345.jpg
datasets/images/1346.jpg
datasets/images/1347.jpg
datasets/images/1348.jpg
datasets/images/1349.jpg
datasets/images/135.jpg
datasets/images/1350.jpg
datasets/images/1351.jpg
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
1、YOLO目标检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测。 2、附赠YOLO环境搭建、训练案例教程和数据集划分脚本,可以根据需求自行划分训练集、验证集、测试集。 3、数据集详情展示和更多数据集下载:https://blog.csdn.net/m0_64879847/article/details/132301975
资源推荐
资源详情
资源评论
收起资源包目录
YOLO汽车头部尾部检测数据集(含1000张图片)+对应voc、coco和yolo三种格式标签+划分脚本+训练教程.rar (2000个子文件)
1. 三个数据集划分脚本使用说明.html 46KB
2、YOLO环境搭建Linux版本.html 40KB
3、YOLO训练教程Linux版本(根据案例修改训练自己的数据集).html 19KB
2、YOLO训练教程Windows版本(根据案例修改训练自己的数据集).html 14KB
1、YOLO环境搭建Windows版本.html 13KB
1、Linux之Ubuntu环境安装教程.html 8KB
训练集、验证集、测试集划分脚本(图片标签划分写入新文件夹).py 3KB
训练集、验证集划分脚本(图片标签划分写入新文件夹).py 3KB
split_train_val生成ImageSets下txt文件划分脚本.py 1KB
train_list.txt 20KB
trainval_list.txt 5KB
test_list.txt 4KB
1277.txt 1KB
val_list.txt 1KB
125.txt 982B
1293.txt 980B
requirements.txt 892B
1737.txt 812B
1629.txt 805B
1494.txt 759B
1391.txt 734B
1869.txt 731B
1148.txt 723B
1139.txt 684B
1106.txt 683B
1125.txt 649B
1039.txt 648B
1848.txt 648B
1733.txt 642B
1283.txt 607B
1483.txt 573B
1021.txt 571B
1419.txt 570B
1403.txt 569B
1615.txt 561B
15.txt 543B
1858.txt 538B
1753.txt 531B
1546.txt 493B
1649.txt 490B
1098.txt 490B
1862.txt 485B
1213.txt 484B
1011.txt 455B
1154.txt 455B
1388.txt 455B
1276.txt 455B
147.txt 455B
1887.txt 417B
1781.txt 417B
1181.txt 417B
1088.txt 417B
1060.txt 417B
1172.txt 417B
1810.txt 417B
1417.txt 408B
1161.txt 406B
1508.txt 405B
1504.txt 401B
1041.txt 399B
1127.txt 388B
1248.txt 379B
1493.txt 379B
1571.txt 366B
1002.txt 341B
1046.txt 341B
1090.txt 341B
1266.txt 341B
1805.txt 341B
1804.txt 341B
1256.txt 341B
1107.txt 325B
1667.txt 323B
1515.txt 323B
1784.txt 322B
1078.txt 322B
1227.txt 321B
1026.txt 320B
1809.txt 303B
1760.txt 303B
1522.txt 303B
1273.txt 303B
146.txt 303B
1646.txt 303B
1822.txt 303B
1540.txt 265B
1859.txt 265B
1247.txt 265B
1290.txt 265B
1009.txt 265B
1298.txt 265B
1787.txt 265B
1520.txt 265B
1415.txt 265B
1786.txt 265B
1851.txt 265B
1633.txt 265B
1527.txt 265B
1890.txt 245B
1251.txt 245B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- 初相识丶2024-09-16感谢大佬分享的资源,对我启发很大,给了我新的灵感。
- m0_742367452024-08-19总算找到了想要的资源,搞定遇到的大问题,赞赞赞!
- 普通网友2024-05-10资源不错,内容挺好的,有一定的使用价值,值得借鉴,感谢分享。
- 2301_768844202024-03-18非常有用的资源,可以直接使用,对我很有用,果断支持!
YOLO数据集工作室
- 粉丝: 678
- 资源: 1587
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- python SAP自动化并发送html outlook邮件
- 【老生谈算法】Matlab实现可变指数遗忘的扩展递归最小二乘法(VEX-RLS)及其应用
- 保护个人隐私安全-彻底清除剪贴板的方法与技巧
- 可直连数据库,找到存在可疑推荐关系字段的表绘制推荐关系层级信息
- 根据excel表格快速制作层级信息工具(线下传销)不包含其他信息,只有层级信息,其他信息添加需要自己添加,理论上问题不大
- 基于MATLAB车牌识别系统实现系统【GUI含界面】.zip
- 基于MATLAB车牌识别系统【含界面GUI】.zip
- 技术资料分享MMCSDTimming很好的技术资料.zip
- 技术资料分享MMC-FAT16-File-System-Specification-v1.0很好的技术资料.zip
- 技术资料分享MDk如何生成bin文件很好的技术资料.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功