%% SVM神经网络中的参数优化---如何更好的提升分类器的性能
%
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr> <td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对<a target="_blank" href="http://www.ilovematlab.cn/thread-48362-1-1.html"><font color="#0000FF">该案例</font></a>提问,做到有问必答。</font></span></td></tr><tr> <td><span class="comment"><font size="2">2:此案例有配套的教学视频,配套的完整可运行Matlab程序。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 3:以下内容为该案例的部分内容(约占该案例完整内容的1/10)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 4:此案例为原创案例,转载请注明出处(<a target="_blank" href="http://www.ilovematlab.cn/">Matlab中文论坛</a>,<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html">《Matlab神经网络30个案例分析》</a>)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 6:您看到的以下内容为初稿,书籍的实际内容可能有少许出入,以书籍实际发行内容为准。</font></span></td> </tr><tr> <td><span class="comment"><font size="2"> 7:此书其他常见问题、预定方式等,<a target="_blank" href="http://www.ilovematlab.cn/thread-47939-1-1.html">请点击这里</a>。</font></span></td> </tr></table>
% </html>
%
%% 清空环境变量
function chapter13_PSO
close all;
clear;
clc;
format compact;
%% 数据提取
% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量
load chapter13_wine.mat;
% 画出测试数据的box可视化图
figure;
boxplot(wine,'orientation','horizontal','labels',categories);
title('wine数据的box可视化图','FontSize',12);
xlabel('属性值','FontSize',12);
grid on;
% 画出测试数据的分维可视化图
figure
subplot(3,5,1);
hold on
for run = 1:178
plot(run,wine_labels(run),'*');
end
xlabel('样本','FontSize',10);
ylabel('类别标签','FontSize',10);
title('class','FontSize',10);
for run = 2:14
subplot(3,5,run);
hold on;
str = ['attrib ',num2str(run-1)];
for i = 1:178
plot(i,wine(i,run-1),'*');
end
xlabel('样本','FontSize',10);
ylabel('属性值','FontSize',10);
title(str,'FontSize',10);
end
% 选定训练集和测试集
% 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集
train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];
% 相应的训练集的标签也要分离出来
train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
% 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集
test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];
% 相应的测试集的标签也要分离出来
test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];
%% 数据预处理
% 数据预处理,将训练集和测试集归一化到[0,1]区间
[mtrain,ntrain] = size(train_wine);
[mtest,ntest] = size(test_wine);
dataset = [train_wine;test_wine];
% mapminmax为MATLAB自带的归一化函数
[dataset_scale,ps] = mapminmax(dataset',0,1);
dataset_scale = dataset_scale';
train_wine = dataset_scale(1:mtrain,:);
test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );
%% 选择最佳的SVM参数c&g
[bestacc,bestc,bestg] = psoSVMcgForClass(train_wine_labels,train_wine);
% 打印选择结果
disp('打印选择结果');
str = sprintf( 'Best Cross Validation Accuracy = %g%% Best c = %g Best g = %g',bestacc,bestc,bestg);
disp(str);
%% 利用最佳的参数进行SVM网络训练
cmd = ['-c ',num2str(bestc),' -g ',num2str(bestg)];
model = svmtrain(train_wine_labels,train_wine,cmd);
%% SVM网络预测
[predict_label,accuracy] = svmpredict(test_wine_labels,test_wine,model);
% 打印测试集分类准确率
total = length(test_wine_labels);
right = sum(predict_label == test_wine_labels);
disp('打印测试集分类准确率');
str = sprintf( 'Accuracy = %g%% (%d/%d)',accuracy(1),right,total);
disp(str);
%% 结果分析
% 测试集的实际分类和预测分类图
% 通过图可以看出只有三个测试样本是被错分的
figure;
hold on;
plot(test_wine_labels,'o');
plot(predict_label,'r*');
xlabel('测试集样本','FontSize',12);
ylabel('类别标签','FontSize',12);
legend('实际测试集分类','预测测试集分类');
title('测试集的实际分类和预测分类图','FontSize',12);
grid on;
snapnow;
%% 子函数 psoSVMcgForClass.m
function [bestCVaccuarcy,bestc,bestg,pso_option] = psoSVMcgForClass(train_label,train,pso_option)
% psoSVMcgForClass
%
% by faruto
%Email:patrick.lee@foxmail.com QQ:516667408 http://blog.sina.com.cn/faruto BNU
%last modified 2010.01.17
%Super Moderator @ www.ilovematlab.cn
% 若转载请注明:
% faruto and liyang , LIBSVM-farutoUltimateVersion
% a toolbox with implements for support vector machines based on libsvm, 2009.
% Software available at http://www.ilovematlab.cn
%
% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for
% support vector machines, 2001. Software available at
% http://www.csie.ntu.edu.tw/~cjlin/libsvm
% 参数初始化
if nargin == 2
pso_option = struct('c1',1.5,'c2',1.7,'maxgen',200,'sizepop',20, ...
'k',0.6,'wV',1,'wP',1,'v',5, ...
'popcmax',10^2,'popcmin',10^(-1),'popgmax',10^3,'popgmin',10^(-2));
end
% c1:初始为1.5,pso参数局部搜索能力
% c2:初始为1.7,pso参数全局搜索能力
% maxgen:初始为200,最大进化数量
% sizepop:初始为20,种群最大数量
% k:初始为0.6(k belongs to [0.1,1.0]),速率和x的关系(V = kX)
% wV:初始为1(wV best belongs to [0.8,1.2]),速率更新公式中速度前面的弹性系数
% wP:初始为1,种群更新公式中速度前面的弹性系数
% v:初始为3,SVM Cross Validation参数
% popcmax:初始为100,SVM 参数c的变化的最大值.
% popcmin:初始为0.1,SVM 参数c的变化的最小值.
% popgmax:初始为1000,SVM 参数g的变化的最大值.
% popgmin:初始为0.01,SVM 参数c的变化的最小值.
Vcmax = pso_option.k*pso_option.popcmax;
Vcmin = -Vcmax ;
Vgmax = pso_option.k*pso_option.popgmax;
Vgmin = -Vgmax ;
eps = 10^(-3);
% 产生初始粒子和速度
for i=1:pso_option.sizepop
% 随机产生种群和速度
pop(i,1) = (pso_option.popcmax-pso_option.popcmin)*rand+pso_option.popcmin;
pop(i,2) = (pso_option.popgmax-pso_option.popgmin)*rand+pso_option.popgmin;
V(i,1)=Vcmax*rands(1,1);
V(i,2)=Vgmax*rands(1,1);
% 计算初始适应度
cmd = ['-v ',num2str(pso_option.v),' -c ',num2str( pop(i,1) ),' -g ',num2str( pop(i,2) )];
fitness(i) = svmtrain(train_label, train, cmd);
fitness(i) = -fitness(i);
end
% 找极值和极值点
[global_fitness bestindex]=min(fitness); % 全局极值
local_fitness=fitness; % 个体极值初始化
global_x=pop(bestindex,:); % 全局极值点
local_x=pop; % 个体极值点初始化
% 每一代种群的平均适应度
avgfitness_gen = zeros(1,pso_option.maxgen);
% 迭代寻优
for i=1:pso_option.maxgen
for j=1:pso_option.sizepop
%速度更新
V(j,:) = pso_option.wV*V(j,:) + pso_option.c1*rand*(local_x(j,:) - pop(j,:)) + pso_option.c2*rand*(global_x - pop(j,:));
if V(j,1) > Vcmax
V(j,1) = Vcmax;
end
if V(j,1) < Vcmin
V(j,1) = Vcmin;
end
if V(j,2) > Vgmax
V(j,2) = Vgmax;
end
if V(j,2) < Vgmin
V(j,2) = Vgmin;
end
%种群更新
pop(j,:)=pop(j,:) + pso_option.wP*V(j,:);
if pop(j,1) > pso_option.popcmax
pop(j,1) = pso_option.popcmax;
end
if pop(j,1) < pso_option.popcmin
pop(j,1) = pso_option.popcmin;
end
if pop(j,2) > pso_option.popgmax
pop(j,2) = pso_option.popgmax;
end
if pop(j,2) < pso_option.popgmin
pop(j,2) = pso_option.popgmin;
end
% 自适应粒子变异
if rand>0.5
k=ceil(2*rand);
if k == 1
pop(j,k) = (20-1)*rand+1;
end
if k == 2
pop(j,k) = (pso_option.popgmax-pso_option.popgmin)*rand + pso_option.popgmin;
end
end
%适应度值
cmd = ['-v ',num2st
yyyyyyhhh222
- 粉丝: 461
- 资源: 6万+
最新资源
- (175601006)51单片机交通信号灯系统设计
- Starter SINAMICS S120驱动第三方直线永磁同步电机系列视频-调试演示.mp4
- (174755032)抽烟、烟雾检测voc数据集
- 基于滑膜控制的差动制动防侧翻稳定性控制,上层通过滑膜控制产生期望的横摆力矩,下层根据对应的paper实现对应的制动力矩分配,实现车辆的防侧翻稳定性控制,通过通过carsim和simulink联合仿真
- 伺服系统基于陷波滤波器双惯量伺服系统机械谐振抑制matlab Simulink仿真 1.模型简介 模型为基于陷波滤波器的双惯量伺服系统机械谐振抑制仿真,采用Matlab R2018a Simul
- (175989002)DDR4 JESD79-4C.pdf
- lanchaoHunanHoutaiQiantai
- (177377030)Python 爬虫.zip
- (177537818)python爬虫基础知识及爬虫实例.zip
- 自动驾驶横纵向耦合控制-复现Apollo横纵向控制 基于动力学误差模型,使用mpc算法,一个控制器同时控制横向和纵向,实现横纵向耦合控制 matlab与simulink联合仿真,纵向控制已经做好油门刹
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈