#### This is a fork of [Can Zhang](https://github.com/zhang-can/ECO-pytorch)'s PyTorch implementation for the [paper](https://arxiv.org/pdf/1804.09066.pdf):
##### " ECO: Efficient Convolutional Network for Online Video Understanding, European Conference on Computer Vision (ECCV), 2018." By Mohammadreza Zolfaghari, Kamaljeet Singh, Thomas Brox
### Update
- **2019.3.05**: This is a major update. This update is more robust and we solved some problems in the previous version such as iter_size and ECO Full model definiation. Updating the training procedure (main.py) and providing the pretrained models for ECOLite and ECOFull. Please let us know if you found any problem or had suggestions to improve the code.
##### NOTE
* Trained models on Kinetics dataset for ECO Lite and C3D are provided.
* Pre-trained model for 2D-Net is provided by [tsn-pytorch](https://github.com/yjxiong/tsn-pytorch).
* **Stay tuned for more updates**
### Environment:
* Python 3.5.2
* PyTorch 0.4.1
* TorchVison: 0.2.1
### Clone this repo
```
git clone https://github.com/mzolfaghari/ECO-pytorch
```
### Generate dataset lists
```bash
python gen_dataset_lists.py <ucf101/something> <dataset_frames_root_path>
```
e.g. python gen_dataset_lists.py something ~/dataset/20bn-something-something-v1/
> The dataset should be organized as:<br>
> <dataset_frames_root_path>/<video_name>/<frame_images>
### Training
1. Download the initialization and trained models:
```Shell
ECO-Lite pretrained model on Kinetics: https://drive.google.com/open?id=1XNIq7byciKgrn011jLBggd2g79jKX4uD
ECO-Full pretrained model on Kinetics: https://drive.google.com/open?id=1ATuN_KctsbFAbcNgWDlETZVsy2vhxZay
```
Othe models:
```Shell
sh models/download_models.sh
```
* If you can not access Google Drive, please download the pretrained models from [BaiduYun](https://pan.baidu.com/s/1Hx52akJLR_ISfX406bkIog), and put them in "models" folder.
2. Command for training ECO Lite model:
```bash
./scripts/run_ECOLite_kinetics.sh local
```
3. For training C3D network use the following command:
```bash
./scripts/run_c3dres_kinetics.sh local
```
4. For finetuning on UCF101 use the following command:
```bash
sh run_demo_ECO_Lite.sh local
or
sh run_demo_ECO_Full.sh local
```
### NOTE
* If you want to train your model from scratch change the config as following:
```bash
--pretrained_parts scratch
```
* configurations explained in "opts.py"
#### TODO
1. Trained models on other datasets
#### Citation
If you use this code or ideas from the paper for your research, please cite our paper:
```
@inproceedings{ECO_eccv18,
author={Mohammadreza Zolfaghari and
Kamaljeet Singh and
Thomas Brox},
title={{ECO:} Efficient Convolutional Network for Online Video Understanding},
booktitle={ECCV},
year={2018}
}
```
#### Contact
[Mohammadreza Zolfaghari](https://github.com/mzolfaghari/ECO-pytorch), [Can Zhang](https://github.com/zhang-can/ECO-pytorch)
Questions can also be left as issues in the repository. We will be happy to answer them.
妄北y
- 粉丝: 2w+
- 资源: 1万+
最新资源
- 将电脑屏幕录屏转换成gif
- MATLAB代码:基于非对称纳什谈判的多微网P2P电能交易策略 关键词:纳什谈判 合作博弈 微网 电转气-碳捕集 P2P电能交易交易 参考文档:加好友获取 仿真平台:MATLAB CPLE
- WebSocket长连接实现步骤:基于心跳机制的消息处理与连接管理详解
- MATLAB代码:基于模型预测算法的含储能微网双层能量管理模型 关键词:储能优化 模型预测控制MPC 微网 优化调度 能量管理 参考文档:私 主要内容:代码主要做的是一个微网双层优化调度模型,微网
- “厉行节约从我做起”班会教案课件模板.pptx
- “班主任工作经验交流”中小学老师培训教案课件.pptx
- 电子元件自动整形机(sw16可编辑+工程图)全套技术资料100%好用.zip
- “光盘行动,节约粮食”教案课件.pptx
- 家庭教育“亲子沟通技巧”教案课件.pptx
- 荷花素才“廉政文化”讲座教案课件模板.pptx
- 人工大猩猩部队GTO优化CNN-LSTM用于多变量负荷预测(Matlab) 所有程序经过验证,保证有效运行 2.提出了一种基于CNN-LSTM的多变量电力负荷预测方法,该方法将历史负荷与气象数据作
- 鲜花商城(springboot+vu)
- 1.Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序列预测; 2.输入数据为单变量时间序列数据,即一维数据; 3.运行环境Matlab2020b及以上,data为数据集,运行主
- 1736388797326.zip
- 在matlab中用蒙特卡洛算法对电动汽车充电负荷进行模拟,可自己修改电动汽车数量,复现 参考lunwen:基于V2G的电动汽车充放电优化调度策略 有注释简单易懂,可随意调整参数
- 研究背景:随着超快激光应用越来越广泛,对超快激光加工过程的材料去除过程就比较关心 研究内容:利用COMSOL仿真软件,构建三维模型,研究电子和晶格温度,引入热焓法对相变过程进行研究 关键词:双温方
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈