馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Disabling wandb](#disabling-wandb)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
* training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
* To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
人工智能项目资料-基于Yolov5和DeepSORT算法,实现对校园内车辆和行人的追踪,并计算他们的速度以及检测是否发生碰撞。. 【探索人工智能的宝藏之地】 无论您是计算机相关专业的在校学生、老师,还是企业界的探索者,这个项目都是为您量身打造的。无论您是初入此领域的小白,还是寻求更高层次进阶的资深人士,这里都有您需要的宝藏。不仅如此,它还可以作为毕设项目、课程设计、作业、甚至项目初期的立项演示。 【人工智能的深度探索】 人工智能——模拟人类智能的技术和理论,使其在计算机上展现出类似人类的思考、判断、决策、学习和交流能力。这不仅是一门技术,更是一种前沿的科学探索。 【实战项目与源码分享】 我们深入探讨了深度学习的基本原理、神经网络的应用、自然语言处理、语言模型、文本分类、信息检索等领域。更有深度学习、机器学习、自然语言处理和计算机视觉的实战项目源码,助您从理论走向实践,如果您已有一定基础,您可以基于这些源码进行修改和扩展,实现更多功能。 【期待与您同行】 我们真诚地邀请您下载并使用这些资源,与我们一起在人工智能的海洋中航行。同时,我们也期待与您的沟通交流,共同学习,共同进步。让我们在这个充满挑战和机遇的领域中共同探索未来!
资源推荐
资源详情
资源评论
收起资源包目录
人工智能项目资料-基于Yolov5和DeepSORT算法.zip (217个子文件)
Dockerfile 821B
Dockerfile 821B
.gitignore 2KB
.gitignore 2KB
.gitignore 176B
.gitignore 176B
.gitkeep 0B
.gitkeep 0B
校园车辆人流监控.iml 484B
校园车辆人流监控.iml 484B
train.jpg 59KB
train.jpg 59KB
README.md 11KB
README.md 11KB
README.md 2KB
README.md 2KB
README.md 986B
README.md 65B
README.md 65B
test.mp4 3.54MB
test.mp4 3.54MB
.name 7B
.name 7B
yolov5m.pt 40.82MB
yolov5m.pt 40.82MB
datasets.py 45KB
datasets.py 45KB
general.py 36KB
general.py 36KB
common.py 32KB
common.py 32KB
wandb_utils.py 27KB
wandb_utils.py 27KB
tf.py 20KB
tf.py 20KB
plots.py 20KB
plots.py 20KB
yolo.py 15KB
yolo.py 15KB
metrics.py 14KB
metrics.py 14KB
torch_utils.py 14KB
torch_utils.py 14KB
json_logger.py 11KB
json_logger.py 11KB
augmentations.py 11KB
augmentations.py 11KB
loss.py 9KB
loss.py 9KB
linear_assignment.py 8KB
linear_assignment.py 8KB
kalman_filter.py 8KB
kalman_filter.py 8KB
__init__.py 7KB
__init__.py 7KB
autoanchor.py 7KB
autoanchor.py 7KB
downloads.py 6KB
downloads.py 6KB
train.py 6KB
train.py 6KB
nn_matching.py 5KB
nn_matching.py 5KB
tracker.py 5KB
tracker.py 5KB
track.py 5KB
track.py 5KB
experimental.py 4KB
experimental.py 4KB
io.py 4KB
io.py 4KB
tracker.py 4KB
tracker.py 4KB
deep_sort.py 4KB
deep_sort.py 4KB
benchmarks.py 4KB
benchmarks.py 4KB
activations.py 4KB
activations.py 4KB
evaluation.py 3KB
evaluation.py 3KB
original_model.py 3KB
original_model.py 3KB
model.py 3KB
model.py 3KB
main.py 3KB
main.py 3KB
iou_matching.py 3KB
iou_matching.py 3KB
callbacks.py 2KB
callbacks.py 2KB
test.py 2KB
test.py 2KB
autobatch.py 2KB
autobatch.py 2KB
detector.py 2KB
detector.py 2KB
preprocessing.py 2KB
preprocessing.py 2KB
feature_extractor.py 2KB
共 217 条
- 1
- 2
- 3
资源评论
妄北y
- 粉丝: 2w+
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 新年主题-3.花生采摘-猴哥666.py
- (6643228)词法分析器 vc 程序及报告
- mysql安装配置教程.txt
- 动手学深度学习(Pytorch版)笔记
- mysql安装配置教程.txt
- mysql安装配置教程.txt
- 彩页资料 配变智能环境综合监控系统2025.doc
- 棉花叶病害图像分类数据集5类别:健康的、蚜虫、粘虫、白粉病、斑点病(9000张图片).rar
- (176205830)编译原理 词法分析器 lex词法分析器
- 使用Python turtle库绘制哈尔滨亚冬会特色图像-含可运行代码及详细解释
- 2023年全国职业院校技能大赛GZ033大数据应用开发赛题答案(2).zip
- 【天风证券-2024研报-】水利部发布《对‘水利测雨雷达’的新质生产力研究》,重点推荐纳睿雷达.pdf
- 【国海证券-2024研报-】海外消费行业周更新:LVMH中国市场挑战严峻,泉峰控股发布盈喜.pdf
- 【招商期货-2024研报-】2024、25年度新疆棉花调研专题报告:北疆成本倒挂,南疆出现盘面利润.pdf
- 【宝城期货-2024研报-】宝城期货股指期货早报:IF、IH、IC、IM.pdf
- 【国元证券(香港)-2024研报-】即时点评:9月火电和风电增速加快,电力运营商盈利有望改善.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功