/*
By downloading, copying, installing or using the software you agree to this
license. If you do not agree to this license, do not download, install,
copy or use the software.
License Agreement
For Open Source Computer Vision Library
(3-clause BSD License)
Copyright (C) 2013, OpenCV Foundation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the names of the copyright holders nor the names of the contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall copyright holders or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
This file was part of GSoC Project: Facemark API for OpenCV
Final report: https://gist.github.com/kurnianggoro/74de9121e122ad0bd825176751d47ecc
Student: Laksono Kurnianggoro
Mentor: Delia Passalacqua
*/
#include "precomp.hpp"
#include "../face.hpp"
#include <fstream>
#include <cmath>
#include <ctime>
#include <cstdio>
#include <cstdarg>
namespace cv {
namespace face {
#define TIMER_BEGIN { double __time__ = (double)getTickCount();
#define TIMER_NOW ((getTickCount() - __time__) / getTickFrequency())
#define TIMER_END }
#define SIMILARITY_TRANSFORM(x, y, scale, rotate) do { \
double x_tmp = scale * (rotate(0, 0)*x + rotate(0, 1)*y); \
double y_tmp = scale * (rotate(1, 0)*x + rotate(1, 1)*y); \
x = x_tmp; y = y_tmp; \
} while(0)
FacemarkLBF::Params::Params(){
cascade_face = "";
shape_offset = 0.0;
n_landmarks = 68;
initShape_n = 10;
stages_n=5;
tree_n=6;
tree_depth=5;
bagging_overlap = 0.4;
model_filename = "";
save_model = true;
verbose = true;
seed = 0;
int _pupils[][6] = { { 36, 37, 38, 39, 40, 41 }, { 42, 43, 44, 45, 46, 47 } };
for (int i = 0; i < 6; i++) {
pupils[0].push_back(_pupils[0][i]);
pupils[1].push_back(_pupils[1][i]);
}
int _feats_m[] = { 500, 500, 500, 300, 300, 300, 200, 200, 200, 100 };
double _radius_m[] = { 0.3, 0.2, 0.15, 0.12, 0.10, 0.10, 0.08, 0.06, 0.06, 0.05 };
for (int i = 0; i < 10; i++) {
feats_m.push_back(_feats_m[i]);
radius_m.push_back(_radius_m[i]);
}
detectROI = Rect(-1,-1,-1,-1);
}
void FacemarkLBF::Params::read( const cv::FileNode& fn ){
*this = FacemarkLBF::Params();
if (!fn["verbose"].empty())
fn["verbose"] >> verbose;
}
void FacemarkLBF::Params::write( cv::FileStorage& fs ) const{
fs << "verbose" << verbose;
}
class FacemarkLBFImpl : public FacemarkLBF {
public:
FacemarkLBFImpl( const FacemarkLBF::Params ¶meters = FacemarkLBF::Params() );
void read( const FileNode& /*fn*/ ) CV_OVERRIDE;
void write( FileStorage& /*fs*/ ) const CV_OVERRIDE;
void loadModel(String fs) CV_OVERRIDE;
bool setFaceDetector(bool(*f)(InputArray , OutputArray, void * extra_params ), void* userData) CV_OVERRIDE;
bool getFaces(InputArray image, OutputArray faces) CV_OVERRIDE;
bool getData(void * items) CV_OVERRIDE;
Params params;
protected:
bool fit( InputArray image, InputArray faces, OutputArrayOfArrays landmarks ) CV_OVERRIDE;//!< from many ROIs
bool fitImpl( const Mat image, std::vector<Point2f> & landmarks );//!< from a face
bool addTrainingSample(InputArray image, InputArray landmarks) CV_OVERRIDE;
void training(void* parameters) CV_OVERRIDE;
Rect getBBox(Mat &img, const Mat_<double> shape);
void prepareTrainingData(Mat img, std::vector<Point2f> facePoints,
std::vector<Mat> & cropped, std::vector<Mat> & shapes, std::vector<BBox> &boxes);
void data_augmentation(std::vector<Mat> &imgs, std::vector<Mat> >_shapes, std::vector<BBox> &bboxes);
Mat getMeanShape(std::vector<Mat> >_shapes, std::vector<BBox> &bboxes);
bool defaultFaceDetector(const Mat& image, std::vector<Rect>& faces);
CascadeClassifier face_cascade;
FN_FaceDetector faceDetector;
void* faceDetectorData;
/*training data*/
std::vector<std::vector<Point2f> > data_facemarks; //original position
std::vector<Mat> data_faces; //face ROI
std::vector<BBox> data_boxes;
std::vector<Mat> data_shapes; //position in the face ROI
private:
bool isModelTrained;
/*---------------LBF Class---------------------*/
class LBF {
public:
void calcSimilarityTransform(const Mat &shape1, const Mat &shape2, double &scale, Mat &rotate);
std::vector<Mat> getDeltaShapes(std::vector<Mat> >_shapes, std::vector<Mat> ¤t_shapes,
std::vector<BBox> &bboxes, Mat &mean_shape);
double calcVariance(const Mat &vec);
double calcVariance(const std::vector<double> &vec);
double calcMeanError(std::vector<Mat> >_shapes, std::vector<Mat> ¤t_shapes, int landmark_n , std::vector<int> &left, std::vector<int> &right );
};
/*---------------RandomTree Class---------------------*/
class RandomTree : public LBF {
public:
RandomTree(){};
~RandomTree(){};
void initTree(int landmark_id, int depth, std::vector<int>, std::vector<double>);
void train(std::vector<Mat> &imgs, std::vector<Mat> ¤t_shapes, std::vector<BBox> &bboxes,
std::vector<Mat> &delta_shapes, Mat &mean_shape, std::vector<int> &index, int stage);
void splitNode(std::vector<cv::Mat> &imgs, std::vector<cv::Mat> ¤t_shapes, std::vector<BBox> &bboxes,
cv::Mat &delta_shapes, cv::Mat &mean_shape, std::vector<int> &root, int idx, int stage);
void write(FileStorage fs, int forestId, int i, int j);
void read(FileStorage fs, int forestId, int i, int j);
int depth;
int nodes_n;
int landmark_id;
cv::Mat_<double> feats;
std::vector<int> thresholds;
std::vector<int> params_feats_m;
std::vector<double> params_radius_m;
};
/*---------------RandomForest Class---------------------*/
class RandomForest : public LBF {
public:
RandomForest(){};
~RandomForest(){};
void initForest(int landmark_n, int trees_n, int tree_depth, double , std::vector<int>, std::vector<double>, bool);
void train(std::vector<cv::Mat> &imgs, std::vector<cv::Mat> ¤t_shapes, \
std::vector<BBox> &bboxes, std::vector<cv::Mat> &delta_shapes, cv::Mat &mean_shape, int stage);
Mat generateLBF(Mat &img, Mat ¤t_shape, BBox &bbox, Mat &mean_shape);
void write(FileStorage fs, int forestId);
void read(FileStorage fs, int forestId);
bool verbose;
int landmark_n;
int trees_n, tree_depth;
double overlap_ratio;
std::vector<
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
软件开发设计:PHP、QT、应用软件开发、系统软件开发、移动应用开发、网站开发C++、Java、python、web、C#等语言的项目开发与学习资料 硬件与设备:单片机、EDA、proteus、RTOS、包括计算机硬件、服务器、网络设备、存储设备、移动设备等 操作系统:LInux、IOS、树莓派、安卓开发、微机操作系统、网络操作系统、分布式操作系统等。此外,还有嵌入式操作系统、智能操作系统等。 网络与通信:数据传输、信号处理、网络协议、网络与通信硬件、网络安全网络与通信是一个非常广泛的领域,它涉及到计算机科学、电子工程、数学等多个学科的知识。 云计算与大数据:数据集、包括云计算平台、大数据分析、人工智能、机器学习等,云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。
资源推荐
资源详情
资源评论
收起资源包目录
Ubuntu下基于opencv和qt的人脸识别考勤系统.zip (60个子文件)
cm
pic
1.jpg 108KB
AdminGUI
inputfacethread.h 528B
AdminGUI.pro 2KB
inputfacethread.cpp 3KB
facetrainthread.h 664B
facelogin.ui 16KB
showtable.cpp 543B
src
getlandmarks.cpp 9KB
mace.cpp 10KB
face_utils.hpp 4KB
face_basic.cpp 2KB
facemarkAAM.cpp 41KB
predict_collector.cpp 4KB
fisher_faces.cpp 7KB
eigen_faces.cpp 6KB
bif.cpp 8KB
lbph_faces.cpp 17KB
face_alignmentimpl.hpp 9KB
regtree.cpp 12KB
facemark.cpp 7KB
facerec.cpp 3KB
facemarkLBF.cpp 49KB
precomp.hpp 2KB
face_alignment.cpp 7KB
trainFacemark.cpp 14KB
face.hpp 17KB
ProcessFile.py 1KB
admingui.h 747B
pic_ui
lu1.png 2KB
in2.png 916B
back2.png 799B
in1.png 981B
face.png 2KB
back1.png 894B
daka.png 961B
pai2 (2).png 2KB
chui1.png 1KB
xun1.png 2KB
day1.png 1KB
main.cpp 504B
facetrainthread.cpp 5KB
showtable.ui 3KB
admingui.cpp 3KB
facelogin.h 1KB
face
facemarkLBF.hpp 4KB
mace.hpp 3KB
facemark_train.hpp 14KB
bif.hpp 3KB
facemarkAAM.hpp 6KB
predict_collector.hpp 5KB
facemark.hpp 3KB
face_alignment.hpp 3KB
facerec.hpp 8KB
AdminGUI.pro.user 25KB
admingui.ui 18KB
facelogin.cpp 6KB
res.qrc 468B
haarcascade_frontalface_alt2.xml 528KB
showtable.h 388B
face.db 4KB
共 60 条
- 1
资源评论
妄北y
- 粉丝: 1w+
- 资源: 1万+
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功