# RegNet
> [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678)
<!-- [BACKBONE] -->
## Abstract
In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.
<div align=center>
<img src="https://user-images.githubusercontent.com/40661020/143971942-da50f719-61e9-43bd-9468-0dbfbe80284e.png"/>
</div>
## Introduction
We implement RegNetX and RegNetY models in detection systems and provide their first results on Mask R-CNN, Faster R-CNN and RetinaNet.
The pre-trained models are converted from [model zoo of pycls](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
## Usage
To use a regnet model, there are two steps to do:
1. Convert the model to ResNet-style supported by MMDetection
2. Modify backbone and neck in config accordingly
### Convert model
We already prepare models of FLOPs from 400M to 12G in our model zoo.
For more general usage, we also provide script `regnet2mmdet.py` in the tools directory to convert the key of models pretrained by [pycls](https://github.com/facebookresearch/pycls/) to
ResNet-style checkpoints used in MMDetection.
```bash
python -u tools/model_converters/regnet2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH}
```
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
### Modify config
The users can modify the config's `depth` of backbone and corresponding keys in `arch` according to the configs in the [pycls model zoo](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
The parameter `in_channels` in FPN can be found in the Figure 15 & 16 of the paper (`wi` in the legend).
This directory already provides some configs with their performance, using RegNetX from 800MF to 12GF level.
For other pre-trained models or self-implemented regnet models, the users are responsible to check these parameters by themselves.
**Note**: Although Fig. 15 & 16 also provide `w0`, `wa`, `wm`, `group_w`, and `bot_mul` for `arch`, they are quantized thus inaccurate, using them sometimes produces different backbone that does not match the key in the pre-trained model.
## Results and Models
### Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :----------------------------------------------------------------------------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :--------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [R-50-FPN](../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py) | pytorch | 1x | 4.4 | 12.0 | 38.2 | 34.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json) |
| [RegNetX-3.2GF-FPN](./mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py) | pytorch | 1x | 5.0 | | 40.3 | 36.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141.log.json) |
| [RegNetX-4.0GF-FPN](./mask_rcnn_regnetx-4GF_fpn_1x_coco.py) | pytorch | 1x | 5.5 | | 41.5 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217-32e9c92d.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217.log.json) |
| [R-101-FPN](../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py) | pytorch | 1x | 6.4 | 10.3 | 40.0 | 36.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204_144809.log.json) |
| [RegNetX-6.4GF-FPN](./mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py) | pytorch | 1x | 6.1 | | 41.0 | 37.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439-3a7aae83.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439.log.json) |
| [X-101-32x4d-FP
没有合适的资源?快使用搜索试试~ 我知道了~
(源码)基于HRNetV2p和Faster RCNN的目标检测系统.zip
共839个文件
py:664个
md:90个
yml:77个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 73 浏览量
2024-11-22
04:34:14
上传
评论
收藏 2.59MB ZIP 举报
温馨提示
# 基于HRNetV2p和Faster RCNN的目标检测系统 ## 项目简介 本项目基于HRNetV2p和Faster RCNN框架,旨在实现高效的目标检测。HRNetV2p作为一种高分辨率网络,能够有效地提取多尺度特征,而Faster RCNN则是一个经典的两阶段目标检测框架,结合了区域提议网络(RPN)和感兴趣区域(ROI)头部的优势。 ## 项目的主要特性和功能 1. 骨干网络使用HRNetV2p作为骨干网络,通过多尺度特征融合提升目标检测的准确性。 2. 颈部网络采用HRFPN(高分辨率特征金字塔网络)作为颈部结构,进一步增强特征的表示能力。 3. 优化器使用SGD优化器,结合学习率调整策略,确保模型在训练过程中稳定收敛。 4. 数据增强在训练过程中使用多尺度训练和随机翻转等数据增强技术,提高模型的泛化能力。 5. 混合精度训练支持混合精度训练(FP16),加速训练过程并减少显存使用。 ## 安装使用步骤 1. 环境配置
资源推荐
资源详情
资源评论
收起资源包目录
(源码)基于HRNetV2p和Faster RCNN的目标检测系统.zip (839个子文件)
.gitkeep 0B
.gitkeep 0B
008.jpg 231KB
LICENSE 1KB
README.md 29KB
README.md 26KB
README.md 25KB
README.md 22KB
README.md 19KB
README.md 17KB
README.md 13KB
README.md 13KB
README.md 12KB
README.md 12KB
README.md 12KB
README.md 12KB
README.md 11KB
README.md 11KB
README.md 11KB
README.md 11KB
README.md 10KB
README.md 10KB
README.md 10KB
README.md 9KB
README.md 9KB
README.md 9KB
README.md 9KB
README.md 9KB
README.md 9KB
README.md 8KB
README.md 8KB
README.md 8KB
README.md 8KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 7KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 6KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 5KB
README.md 4KB
README.md 4KB
README.md 4KB
README.md 4KB
README.md 4KB
README.md 4KB
README.md 4KB
README.md 4KB
README.md 4KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 3KB
README.md 2KB
README.md 2KB
reppoints.png 1.14MB
template_new.png 19KB
template.png 5KB
wider_face.py 15KB
lad_r50_paa_r101_fpn_coco_1x.py 12KB
visualize_test.py 12KB
共 839 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
资源评论
t0_54coder
- 粉丝: 2975
- 资源: 5639
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功