### Generic Build Instructions
#### Setup
To build GoogleTest and your tests that use it, you need to tell your build
system where to find its headers and source files. The exact way to do it
depends on which build system you use, and is usually straightforward.
### Build with CMake
GoogleTest comes with a CMake build script
([CMakeLists.txt](https://github.com/google/googletest/blob/master/CMakeLists.txt))
that can be used on a wide range of platforms ("C" stands for cross-platform.).
If you don't have CMake installed already, you can download it for free from
<http://www.cmake.org/>.
CMake works by generating native makefiles or build projects that can be used in
the compiler environment of your choice. You can either build GoogleTest as a
standalone project or it can be incorporated into an existing CMake build for
another project.
#### Standalone CMake Project
When building GoogleTest as a standalone project, the typical workflow starts
with
```
git clone https://github.com/google/googletest.git -b release-1.11.0
cd googletest # Main directory of the cloned repository.
mkdir build # Create a directory to hold the build output.
cd build
cmake .. # Generate native build scripts for GoogleTest.
```
The above command also includes GoogleMock by default. And so, if you want to
build only GoogleTest, you should replace the last command with
```
cmake .. -DBUILD_GMOCK=OFF
```
If you are on a \*nix system, you should now see a Makefile in the current
directory. Just type `make` to build GoogleTest. And then you can simply install
GoogleTest if you are a system administrator.
```
make
sudo make install # Install in /usr/local/ by default
```
If you use Windows and have Visual Studio installed, a `gtest.sln` file and
several `.vcproj` files will be created. You can then build them using Visual
Studio.
On Mac OS X with Xcode installed, a `.xcodeproj` file will be generated.
#### Incorporating Into An Existing CMake Project
If you want to use GoogleTest in a project which already uses CMake, the easiest
way is to get installed libraries and headers.
* Import GoogleTest by using `find_package` (or `pkg_check_modules`). For
example, if `find_package(GTest CONFIG REQUIRED)` succeeds, you can use the
libraries as `GTest::gtest`, `GTest::gmock`.
And a more robust and flexible approach is to build GoogleTest as part of that
project directly. This is done by making the GoogleTest source code available to
the main build and adding it using CMake's `add_subdirectory()` command. This
has the significant advantage that the same compiler and linker settings are
used between GoogleTest and the rest of your project, so issues associated with
using incompatible libraries (eg debug/release), etc. are avoided. This is
particularly useful on Windows. Making GoogleTest's source code available to the
main build can be done a few different ways:
* Download the GoogleTest source code manually and place it at a known
location. This is the least flexible approach and can make it more difficult
to use with continuous integration systems, etc.
* Embed the GoogleTest source code as a direct copy in the main project's
source tree. This is often the simplest approach, but is also the hardest to
keep up to date. Some organizations may not permit this method.
* Add GoogleTest as a git submodule or equivalent. This may not always be
possible or appropriate. Git submodules, for example, have their own set of
advantages and drawbacks.
* Use CMake to download GoogleTest as part of the build's configure step. This
approach doesn't have the limitations of the other methods.
The last of the above methods is implemented with a small piece of CMake code
that downloads and pulls the GoogleTest code into the main build.
Just add to your `CMakeLists.txt`:
```cmake
include(FetchContent)
FetchContent_Declare(
googletest
# Specify the commit you depend on and update it regularly.
URL https://github.com/google/googletest/archive/609281088cfefc76f9d0ce82e1ff6c30cc3591e5.zip
)
# For Windows: Prevent overriding the parent project's compiler/linker settings
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
# Now simply link against gtest or gtest_main as needed. Eg
add_executable(example example.cpp)
target_link_libraries(example gtest_main)
add_test(NAME example_test COMMAND example)
```
Note that this approach requires CMake 3.14 or later due to its use of the
`FetchContent_MakeAvailable()` command.
##### Visual Studio Dynamic vs Static Runtimes
By default, new Visual Studio projects link the C runtimes dynamically but
GoogleTest links them statically. This will generate an error that looks
something like the following: gtest.lib(gtest-all.obj) : error LNK2038: mismatch
detected for 'RuntimeLibrary': value 'MTd_StaticDebug' doesn't match value
'MDd_DynamicDebug' in main.obj
GoogleTest already has a CMake option for this: `gtest_force_shared_crt`
Enabling this option will make gtest link the runtimes dynamically too, and
match the project in which it is included.
#### C++ Standard Version
An environment that supports C++11 is required in order to successfully build
GoogleTest. One way to ensure this is to specify the standard in the top-level
project, for example by using the `set(CMAKE_CXX_STANDARD 11)` command. If this
is not feasible, for example in a C project using GoogleTest for validation,
then it can be specified by adding it to the options for cmake via the
`DCMAKE_CXX_FLAGS` option.
### Tweaking GoogleTest
GoogleTest can be used in diverse environments. The default configuration may
not work (or may not work well) out of the box in some environments. However,
you can easily tweak GoogleTest by defining control macros on the compiler
command line. Generally, these macros are named like `GTEST_XYZ` and you define
them to either 1 or 0 to enable or disable a certain feature.
We list the most frequently used macros below. For a complete list, see file
[include/gtest/internal/gtest-port.h](https://github.com/google/googletest/blob/master/googletest/include/gtest/internal/gtest-port.h).
### Multi-threaded Tests
GoogleTest is thread-safe where the pthread library is available. After
`#include "gtest/gtest.h"`, you can check the
`GTEST_IS_THREADSAFE` macro to see whether this is the case (yes if the macro is
`#defined` to 1, no if it's undefined.).
If GoogleTest doesn't correctly detect whether pthread is available in your
environment, you can force it with
-DGTEST_HAS_PTHREAD=1
or
-DGTEST_HAS_PTHREAD=0
When GoogleTest uses pthread, you may need to add flags to your compiler and/or
linker to select the pthread library, or you'll get link errors. If you use the
CMake script, this is taken care of for you. If you use your own build script,
you'll need to read your compiler and linker's manual to figure out what flags
to add.
### As a Shared Library (DLL)
GoogleTest is compact, so most users can build and link it as a static library
for the simplicity. You can choose to use GoogleTest as a shared library (known
as a DLL on Windows) if you prefer.
To compile *gtest* as a shared library, add
-DGTEST_CREATE_SHARED_LIBRARY=1
to the compiler flags. You'll also need to tell the linker to produce a shared
library instead - consult your linker's manual for how to do it.
To compile your *tests* that use the gtest shared library, add
-DGTEST_LINKED_AS_SHARED_LIBRARY=1
to the compiler flags.
Note: while the above steps aren't technically necessary today when using some
compilers (e.g. GCC), they may become necessary in the future, if we decide to
improve the speed of loading the library (see
<http://gcc.gnu.org/wiki/Visibility> for details). Therefo
t0_54coder
- 粉丝: 3202
- 资源: 5642
最新资源
- 麻雀优化算法SSA优化BP做多特征输入单个因变量输出的分类模型 程序内注释详细直接替数据就可以用 想要的加好友我
- 麻雀优化算法SSA优化深度学习机DELM,建立多特征输入单个因变量输出的拟合预测模型 程序内注释详细直接替数据就可以用 程序语言为matlab
- mmexport1736592575149.jpg
- NFC线圈设计#HFSS分析设计13.56MHz RFID天线及其匹配电路 ①在HFSS中创建参数化的线圈天线模型...... ②使用HFSS分析查看天线在13.56GHz工作频率上的等效电感值、等生
- Hands-On-Machine-Learning-with-Scikit-Learn-and-TensorFlow-3rd-Edition
- 针对速度环的滑模控制器永磁同步电机矢量控制仿真模型,PMSM滑模速度控制器算法,使用matlab simulink搭建,以供参考学习
- Video-2024-09-28下午-聊天1.0案例基础引导逻辑.wmv
- A星路径规划算法,Matlab实现A星算法,可自己改变地图和障碍物,自定义起点坐标和终点坐标
- 基于核极限学习机KELM、在线顺序极限学习机OS-ELM、在线贯序核极限学习机OSKELM、遗忘因子的在线贯列核极限学习F-OSKELM和自适应遗忘因子的在线贯列核极限学习AF-OSKELM数据预测
- 考虑 化成本的混合储能微电网双层能量管理系统(复现) 本文的主要贡献如下:1)提出了一种新型的包含混合ESS的两层微电网EMS 电力调度的目标是上层的运行成本最小,下层的预测不确定性和电力波动最小
- bms电池管理系统 锂电池算法SOC代码 获取锂电池SOC采用的是电流积分法,电化学阻抗法 电流积分法又称为安时积分法或库伦计数,通过将电池电流对时间进行积分来计算电池的荷电状态 这种方法对于计算
- 基于SSM的“软件缺陷管理系统”的设计与实现(源码+数据库+文档+PPT).zip
- 西门子S7-1200PLC双轴定位算法电池焊接控制博图程序案例,触摸屏画面采用威纶触摸屏 程序设计结构灵活,采用SCL语言+梯形图结构,项目包括: 1.博图V15PLC程序 2.威纶通触摸屏程序
- 基于遗传算法的微电网储能配置方法 搭建以储能配置综合成本最低和供电可靠性最高为目标函数,并考虑DG电源约束、储能充放电约束和负荷平衡约束的多目标优化模型 在传统建立成本目标函数时只考虑单一投资成本的
- 基于matlab的二维小波相干分析,以空气质量数据为例 进行二维小波相干分析
- 基于simulink直流无刷电机仿真模型 速度电流闭环PID反馈控制 另外还有一个三相电机模型(图4)模型良好,调试完美 如图
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈