# DrugResponse
Analysis of drug response based on cell staining
## Deep Dye Drop based cell cycle gating
### Installation via conda/mamba
If necessary, install mamba:
```
conda install mamba
```
Create a conda environment with the necessary dependencies:
```
mamba env create -n deep_dye_drop --file=env_conda.yaml
```
Activate the new conda environment
```
conda activate deep_dye_drop
```
Install the cell_cycle_gating package and other necessary packages through pip
```
pip install git+https://github.com/datarail/datarail.git
pip install git+https://github.com/datarail/gr_metrics.git#egg=gr50\&subdirectory=SRC/python
pip install git+https://github.com/datarail/DrugResponse.git#egg=cell_cycle_gating\&subdirectory=python
```
Open Jupyter Lab:
```
jupyter-lab
```
If Jupyter Lab doesn't automatically open in your browser, visit http://localhost:8888/
Select the "deep-dye-drop" conda environment for the Python kernel.
### Installation via docker
Pull the docker image
```
docker pull labsyspharm/deep-dye-drop
```
Change to the directory you would like to mount via docker
```
cd <your directory>
```
Create a docker container running on port 7777 (you may choose any free port)
```
docker run -d -p 7777:8888 -v "${PWD}":/home/jovyan/work --name ddd_notebook labsyspharm/deep-dye-drop start-notebook.sh --IdentityProvider.token=''
```
This will mount the current working directory to the "work" folder within the container, giving you access to the files and jupyter notebooks therein.
Note: "jovyan" is the default username used by the [Jupyter Docker Stacks](https://jupyter-docker-stacks.readthedocs.io/en/latest/) docker images upon which our docker image is built.
Open Jupyter Lab in your browser at http://localhost:7777/ or on the port of your choosing.
Select the "deep-dye-drop" conda environment for the Python kernel.
### Cell cycle gating example
See the "python/cell_cycle_gating/examples/DDR_example.ipynb" notebook.
### Getting started
* cd into the directory that contains the object level data folders.
* Start a Jupyter notebook or Ipython session.
* For each plate (object level folder), use the template below to compute live/dead status and cell cycle phases of individual cells.
* The dataframe `df` returns well-level summary of number of live/dead cells and fraction of cells in each phase of the cell cycle.
* The script saves a pdf showing the gating on each DNA v EDU scatter plot for review.
* The dataframe `df` is also saved as a .csv file with the same name as the object level folder.
```python
from cell_cycle_gating import run_cell_cycle_gating as rccg
obj = 'path_to_object_level_data_folder'
df = rccg.run(obj)
```
![Alt text](python/cell_cycle_gating/example_plots/example_plot.jpg?raw=true "Title")
### LICENSE and FUNDING
Deep Dye Drop's automated gating package is currenlty available under the MIT license .The package was developed with funding from U54 grant HL127365, "The Library of Integrated Network-Based Cellular Signatures" under the NIH Common Fund program, and NCI U54 grant CA225088 for the Harvard Medical School (HMS) Center for Cancer Systems Pharmacology (CCSP).
没有合适的资源?快使用搜索试试~ 我知道了~
基于细胞染色的药物反应分析matlab代码.zip
共284个文件
m:232个
py:17个
txt:14个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 101 浏览量
2024-02-21
23:23:04
上传
评论
收藏 4.78MB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
资源推荐
资源详情
资源评论
收起资源包目录
基于细胞染色的药物反应分析matlab代码.zip (284个子文件)
CStr2String.c 9KB
summary_180306_185009-V[20849].csv 7KB
EX_01_metadata.csv 299B
working_code_jake.ipynb 213KB
manual_gating_example.ipynb 3KB
manual_gating_v2_example.ipynb 3KB
DDR_example.ipynb 2KB
example_plot.jpg 851KB
CCphases.m 26KB
CellCycleClassification.m 20KB
dr.m 16KB
DataHash.m 15KB
uTest_CStr2String.m 15KB
hpdd_exporter.m 14KB
DeadCellFilter.m 13KB
Process_CellCountData2.m 10KB
Annotate_CellCountData.m 9KB
Import_PlatesCellCountData2.m 9KB
TreatmentDesign.m 8KB
Import_PlatesCellCountData.m 8KB
collapse_.m 8KB
GR_OverTime.m 7KB
ICcurve_fit.m 7KB
hpdd_importer.m 7KB
Process_CellCountData.m 7KB
DrugDesignToTable.m 7KB
TestPlateBias.m 7KB
CellCycleReClass.m 6KB
plot_multidims.m 6KB
AddPlateInfo_RawData.m 6KB
pH3Filter.m 6KB
table2ndarray.m 6KB
Import_SingleCell.m 6KB
DrugDesign_plot.m 6KB
TreatmentTableToDrugDesign.m 5KB
dscatter.m 5KB
process_args__.m 5KB
MatrixToDrugDesign.m 5KB
ExtractCombowSingleCell.m 5KB
Import_IncucyteCellCountData.m 5KB
Import_CyCIFData.m 4KB
slice1_.m 4KB
XMLElement.m 4KB
Merge_CyCIFcycles.m 4KB
Merge_CellCountData.m 4KB
ExtractCurves_CellCountData.m 4KB
EvaluateBliss.m 4KB
tsv2table.m 4KB
TimeMerge_CellCountData.m 4KB
ExtractCurves_CellCountData2.m 3KB
EdgeCorrecting_CellCountData.m 3KB
sort_table.m 3KB
CStr2String.m 3KB
DrugDesign_Vstack.m 3KB
DrugDesign_Hstack.m 3KB
PlateFilterByFocus.m 3KB
TimeCourse_DivRate.m 3KB
export_DrugDesign.m 3KB
example_modified_hpdd_file.m 3KB
Import_CTGData.m 3KB
DrugResponseTableToCombo.m 3KB
ImportAnnotate_DGEdata.m 3KB
collapse.m 2KB
round_Doses.m 2KB
TestBias_multiplates.m 2KB
estimate_rates_endpoint.m 2KB
keyed_matrix_copy.m 2KB
ndarray2table.m 2KB
tsvwrite.m 2KB
collapse_meanSEM.m 2KB
parseCellCycleInputs.m 2KB
get_DesignDrugs.m 2KB
nancorr.m 2KB
ndarraymap.m 2KB
table2tsv.m 2KB
calculate_steady_state.m 2KB
group_rows_.m 2KB
matrix_from_table.m 2KB
DefineFixedControlPositions.m 2KB
length_.m 2KB
Write_DesignTreatment_summary.m 1KB
TextDesignFile_importer.m 1KB
make_test_table.m 1KB
MovingWindow.m 1KB
plot_singleCell_combo.m 1KB
tomaxdims.m 1KB
tsv2cell.m 1KB
Write_D300_summary.m 1KB
nr.m 1KB
DrugDesign_PutOnPlate.m 1KB
index.m 1KB
ExtractMatchedKeys.m 1KB
mktbl.m 1KB
cartesian_product.m 1KB
rate_optimization_endpoint.m 1KB
err_allrates.m 1KB
ImportCheckPlateInfo.m 1KB
fill_missing_keys_.m 1KB
eqtable.m 1KB
cartesian_product_table.m 1KB
共 284 条
- 1
- 2
- 3
资源评论
Matlab科研辅导帮
- 粉丝: 3w+
- 资源: 7796
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 大模型AI典型示范应用案例集
- AI指令合集-微头条10种框架创作指令
- 好看的邀请函PSD源文件(18个).zip
- Nvidia GeForce GTX 1080 TI显卡驱动(Win7、Win8驱动)
- AI指令合集-爆款文案优化助手
- Nvidia GeForce GTX 1080 TI显卡驱动(Win10、Win11驱动)
- GJB150A-2009军用装备实验室环境试验方法(共19份标准文件)
- 浩辰CAD看图王8.6.0最新版本下载,轻量化CAD看图软件,无需下载专业CAD软件,即可实现CAD看图、CAD图纸编辑、格式转换、三维览图等
- SW materials
- 好看的票券PSD源文件(15个).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功