# Vertical profiles of turbulence with ANN
[![View Vertical profiles of turbulence with ANN on File Exchange](https://www.mathworks.com/matlabcentral/images/matlab-file-exchange.svg)](https://se.mathworks.com/matlabcentral/fileexchange/127024-vertical-profiles-of-turbulence-with-ann)
[![DOI](https://zenodo.org/badge/620934552.svg)](https://zenodo.org/badge/latestdoi/620934552)
<a href="https://www.buymeacoffee.com/echeynet" target="_blank"><img src="https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png" alt="Buy Me A Coffee" style="height: 25px !important;width: 120px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
This code provides information on the vertical profile of the along-wind standard deviation in the atmospheric boundary layer with a shallow neural network.
## Summary
The first part of the documentation uses data from Želi et al. [1], which are openly available on Zenodo at [https://zenodo.org/record/3937500](https://zenodo.org/record/3937500). These data consist of four different simulations of the first and second-order profiles of the flow characteristics in the stable 1D-atmospheric boundary layer.
The second part of the documentation uses data from Allaerts et al. [2], which are openly available at [https://data.4tu.nl/datasets/30bdab8c-dee8-40cf-9761-578c9f8392ae](https://data.4tu.nl/datasets/30bdab8c-dee8-40cf-9761-578c9f8392ae). These data come from two days of LES simulations in the atmospheric boundary layer. The dataset is quite large (5 GB), so the user will have to download the data beforehand.
The script explores the data for two purposes:
- Check that a simple Matlab implementation of the Bulk Richardson Number gives realistic results.
- Apply a simple shallow Neural network to predict the profile of the standard deviation of the along-wind velocity component, knowing only the profiles of the two horizontal mean velocity components and the profile of the standard deviation of the vertical velocity component.
## Content
The submission contains:
- The dataset data.mat for the first example.
- The function BulkRichardson.m, which calculates the bulk Richardson number.
- The function get_stdU, which trains the artificial neural network.
- The function getSubSamples, used in the second example only.
## References
[1] Želi, V., Brethouwer, G., Wallin, S., & Johansson, A. V. (2020). Modelling of stably stratified atmospheric boundary layers with varying stratifications. Boundary-Layer Meteorology, 176(2), 229-249.
[2] Allaerts, D., Quon, E., & Churchfield, M. (2023). Using observational mean‐flow data to drive large‐eddy simulations of a diurnal cycle at the SWiFT site. Wind Energy.
没有合适的资源?快使用搜索试试~ 我知道了~
基于浅层 ANN 获取大气边界层中顺风标准差垂直剖面信息的matlab代码.zip
共7个文件
m:3个
txt:1个
md:1个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 179 浏览量
2023-10-28
13:22:40
上传
评论
收藏 151KB ZIP 举报
温馨提示
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 5.作者介绍:某大厂资深算法工程师,从事Matlab算法仿真工作10年;擅长智能优化算法、神经网络预测、信号处理、元胞自动机等多种领域的算法仿真实验,更多仿真源码、数据集定制私信+。
资源推荐
资源详情
资源评论
收起资源包目录
基于浅层 ANN 获取大气边界层中顺风标准差垂直剖面信息的matlab代码.zip (7个子文件)
基于浅层 ANN 获取大气边界层中顺风标准差垂直剖面信息的matlab代码
get_stdU.m 2KB
说明.txt 2KB
getSubSamples.m 5KB
Documentation.mlx 89KB
README.md 3KB
data.mat 54KB
BulkRichardson.m 785B
共 7 条
- 1
资源评论
Matlab科研辅导帮
- 粉丝: 3w+
- 资源: 7796
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功