# Vertical profiles of turbulence with ANN
[![View Vertical profiles of turbulence with ANN on File Exchange](https://www.mathworks.com/matlabcentral/images/matlab-file-exchange.svg)](https://se.mathworks.com/matlabcentral/fileexchange/127024-vertical-profiles-of-turbulence-with-ann)
[![DOI](https://zenodo.org/badge/620934552.svg)](https://zenodo.org/badge/latestdoi/620934552)
<a href="https://www.buymeacoffee.com/echeynet" target="_blank"><img src="https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png" alt="Buy Me A Coffee" style="height: 25px !important;width: 120px !important;box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;-webkit-box-shadow: 0px 3px 2px 0px rgba(190, 190, 190, 0.5) !important;" ></a>
This code provides information on the vertical profile of the along-wind standard deviation in the atmospheric boundary layer with a shallow neural network.
## Summary
The first part of the documentation uses data from Želi et al. [1], which are openly available on Zenodo at [https://zenodo.org/record/3937500](https://zenodo.org/record/3937500). These data consist of four different simulations of the first and second-order profiles of the flow characteristics in the stable 1D-atmospheric boundary layer.
The second part of the documentation uses data from Allaerts et al. [2], which are openly available at [https://data.4tu.nl/datasets/30bdab8c-dee8-40cf-9761-578c9f8392ae](https://data.4tu.nl/datasets/30bdab8c-dee8-40cf-9761-578c9f8392ae). These data come from two days of LES simulations in the atmospheric boundary layer. The dataset is quite large (5 GB), so the user will have to download the data beforehand.
The script explores the data for two purposes:
- Check that a simple Matlab implementation of the Bulk Richardson Number gives realistic results.
- Apply a simple shallow Neural network to predict the profile of the standard deviation of the along-wind velocity component, knowing only the profiles of the two horizontal mean velocity components and the profile of the standard deviation of the vertical velocity component.
## Content
The submission contains:
- The dataset data.mat for the first example.
- The function BulkRichardson.m, which calculates the bulk Richardson number.
- The function get_stdU, which trains the artificial neural network.
- The function getSubSamples, used in the second example only.
## References
[1] Želi, V., Brethouwer, G., Wallin, S., & Johansson, A. V. (2020). Modelling of stably stratified atmospheric boundary layers with varying stratifications. Boundary-Layer Meteorology, 176(2), 229-249.
[2] Allaerts, D., Quon, E., & Churchfield, M. (2023). Using observational mean‐flow data to drive large‐eddy simulations of a diurnal cycle at the SWiFT site. Wind Energy.
Matlab科研辅导帮
- 粉丝: 3w+
- 资源: 7814
最新资源
- MTK BT认证测试,工具说明
- ubuntu系统,Qt结合opencv开发相关内容,本人操作过程中遇到问题及解答方案
- E000627美妆美甲医学美容医院类网站模板.zip+PHP+Mysql+易优CMS+建站模板
- 玉米识别数据集 yolov11格式标注,5647张图,可精准识别玉米粒,正确识别率达到99.6%,用于识别检测玉米粒个数统计,或识别是否包含玉米
- 玉米识别数据集 yolov9格式标注,5647张图,可精准识别玉米粒,正确识别率达到99.6%,用于识别检测玉米粒个数统计,或识别是否包含玉米
- 《机器学习实战》-机器学习领域的Python实践指南:涵盖基础理论与实战项目
- 机械设计铭牌气动打标机sw16可编辑全套技术资料100%好用.zip
- 机械设计密码门锁翻盖疲劳测试sw17可编辑全套技术资料100%好用.zip
- FreeModbus协议栈从入门到精通,含STM32+FreeRTOS主站、从站例程DEMO,注释详尽
- chrome插件 可以将一张图片分割成任意等份
- 德普微一级代理 DP5201AA DFN 2*2-6L, 1节锂电池用二合一保护
- 德普微一级代理 DP5201AB DFN 2*2-6L 1节锂电池用二合一保护
- 神卓S700异地组网设备的监控互联解决方案及其应用
- 德普微一级代理 DP5201BA DFN 2*2-6L 1节锂电池用二合一保护
- 德普微一级代理 DP5201DCA DFN1*1 1节锂离子/锂聚合物电池保护芯片(集成功率 MOS)
- 蓝桥杯嵌入式赛点资源包
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈