% This model simulated the evolution of detrital carbonate
% mineral and isotope compositions during river transport
% It considers input from Tethyan Himalaya and Lesser Himalaya sources,
% addition of secondary calcite and preferential dissolution of calcite
clear
%Get empirical data from xls source file
Dataturb=xlsread('BoB_data_Calcite_Turb');
D47data_turb=Dataturb(:,1);
D47data_SE_turb=Dataturb(:,2);
d13Cdata_turb=Dataturb(:,3);
d13Cdata_SD_turb=Dataturb(:,4);
d18Odata_turb=Dataturb(:,5);
d18Odata_SD_turb=Dataturb(:,6);
TD47data_turb=Dataturb(:,7);
TD47data_SE_turb=Dataturb(:,8);
cal_dol_data_turb=Dataturb(:,9);
dol_cal_data_turb=Dataturb(:,10);
dol_carb_data_turb=Dataturb(:,11);
cal_carb_data_turb=Dataturb(:,12);
Al_Si_data_turb=Dataturb(:,13);
%define endmember components:
d18O_TH=-14; %Tethyan Himalaya calcite d18O vpdb
d13C_TH=0; %Tethyan Himalaya calcite d13C vpdb
TD47_TH=184; %Tethyan Himalaya clumped isotope temperature
Cal_TH=20; %Tethyan Himalaya calcite wt%
Dol_TH=4; %Tethyan Himalaya dolomite wt%
d18O_LH=-14; %Lesser Himalaya calcite d18O vpdb
d13C_LH=0; %Lesser Himalaya calcite d13C vpdb
TD47_LH=184; %Lesser Himalaya clumped isotope temperature
Cal_LH=0.5; %Lesser Himalaya calcite wt%
Dol_LH=4; %Lesser Himalaya dolomite wt%
d18O_SEC=-10; %Secondary floodplain calcite d18O vpdb
d13C_SEC=-2; %Secondary floodplain calcite d13C vpdb
TD47_SEC=19; %Secondary floodplain calcite clumped isotope temperature
Cal_SEC=5; %Secondary floodplain calcite wt%
Dol_SEC=0; %Secondary floodplain dolomite wt%
%simplified linear dissolution fluxes
Trans_t=54; %time in transport (dimensionless)
cal_diss=0.25; %calcite dissolution rate (wt% per time unit)
dol_diss=0.03; %dolomite dissolution rate (wt% per time unit)
% generate endmember vectors
TH=[d18O_TH,d13C_TH,TD47_TH,Cal_TH,Dol_TH];
LH=[d18O_LH,d13C_LH,TD47_LH,Cal_LH,Dol_LH];
SEC=[d18O_SEC,d13C_SEC,TD47_SEC,Cal_SEC,Dol_SEC];
%%%%%Scenario 1 - varying X_TH%%%%%%%%%%%%%%
X_Him=0.7; %relative contribution Himalayan flux after dissolution X_Him=Him/(Him+FP)
%Provenanace effect - mixing of TH and LH
for i=1:37 %=1:64%mixing proportions for TH/(TH+LH)input into the floodplain
X_TH=0.63+(i-1)/100;%=0.36(i-1)/100;
Him_input(i,:)=mix(X_TH,TH,LH); %calculates mineral and isotopic properties of mixed himalayan detrital input
Him_input_diss(i,:)=Him_input(i,:);
Him_input_diss(i,4)=Him_input(i,4)-cal_diss*Trans_t;
Him_input_diss(i,5)=Him_input(i,5)-dol_diss*Trans_t;
if Him_input_diss(i,4)<0
Him_input_diss(i,4)=0;
end
if Him_input_diss(i,5)<0
Him_input_diss(i,5)=0;
end
FP_output(i,:)=mix(X_Him,Him_input_diss(i,:),SEC); %Calculate final mixing ratio by addition of Secondary calcite
ratio(i)=FP_output(i,4)/(FP_output(i,4)+FP_output(i,5)); %calculate dol/(cal+dol) ratio
end
figure (1)
p1=plot(ratio,FP_output(:,3));
hold on
scatter (cal_carb_data_turb,TD47data_turb,'o');
title('Varying X_TH')
ylabel('T\Delta_{47}')
xlabel('cal/\Sigma carbonate')
%
% figure (2)
% p2=plot(FP_output(:,1),FP_output(:,3));
% hold on
% scatter(d18Odata_turb,TD47data_turb,'o');
% title('Varying X_TH')
% ylabel('TD47')
% xlabel('d18O(permil VPDB)')
%
% figure (3)
% p3=plot(FP_output(:,2),FP_output(:,3));
% hold on
% scatter(d13Cdata_turb,TD47data_turb,'o');
% title('Varying X_TH')
% ylabel('TD47')
% xlabel('d13C(permil VPDB)')
%%%%%Scenario II - varying X_Him%%%%%%%%%%%%%%%%%%
% X_TH=0.2; %relative contribution of Tethyan Himalaya to the total mountain flux =TH/(TH+LH)
% %Provenanace effect - mixing of TH and LH
% for i=1:101 %mixing proportions for TH/(TH+LH)input into the floodplain
% X_Him=(i-1)/100;
% Him_input(i,:)=mix(X_TH,TH,LH); %calculates mineral and isotopic properties of mixed himalayan detrital input
% Him_input_diss(i,:)=Him_input(i,:);
% Him_input_diss(i,4)=Him_input(i,4)-cal_diss*Trans_t;
% Him_input_diss(i,5)=Him_input(i,5)-dol_diss*Trans_t;
%
%
% if Him_input_diss(i,4)<0
% Him_input_diss(i,4)=0;
% end
% if Him_input_diss(i,5)<0
% Him_input_diss(i,5)=0;
% end
%
% FP_output(i,:)=mix(X_Him,Him_input_diss(i,:),SEC); %Calculate final mixing ratio by addition of Secondary calcite
% ratio(i)=FP_output(i,4)/(FP_output(i,4)+FP_output(i,5)); %calculate dol/(cal+dol) ratio
% end
%
% figure (1)
% p1=plot(ratio,FP_output(:,3));
% hold on
% scatter(cal_carb_data_turb,TD47data_turb,'o');
% title('Varying X_Him')
% ylabel('T\Delta_{47}')
% xlabel('cal/\Sigma carbonate')
%%%%%Scenario III - varying weathering intensity%%%%%%%%%%%%%
% X_TH=0.36; %relative contribution of Tethyan Himalaya to the total mountain flux =TH/(TH+LH)
% % value of 0.36 is calculated for the last 1-2 millenia based on sediment
% % fluxes from Lupker et al. (2012B) and Dingle et al. (2017)
% X_Him=0.65; %relative contribution Himalayan flux after dissolution X_Him=Him/(Him+FP)
% t=50; %maximum
% %Provenanace effect - mixing of TH and LH
% for i=1:101 %mixing proportions for TH/(TH+LH)input into the floodplain
% Trans_t=t*(i-1)/100; %Varying residance time from 0-10 time units
% Him_input(i,:)=mix(X_TH,TH,LH); %calculates mineral and isotopic properties of mixed himalayan detrital input
% Him_input_diss(i,:)=Him_input(i,:);
% Him_input_diss(i,4)=Him_input(i,4)-cal_diss*Trans_t;
% Him_input_diss(i,5)=Him_input(i,5)-dol_diss*Trans_t;
%
%
% if Him_input_diss(i,4)<0
% Him_input_diss(i,4)=0;
% end
% if Him_input_diss(i,5)<0
% Him_input_diss(i,5)=0;
% end
%
% FP_output(i,:)=mix(X_Him,Him_input_diss(i,:),SEC); %Calculate final mixing ratio by addition of Secondary calcite
% ratio(i)=FP_output(i,4)/(FP_output(i,4)+FP_output(i,5)); %calculate cal/(cal+dol) ratio
% end
%
% figure (1)
% p1=plot(ratio,FP_output(:,3));
% hold on
% scatter(cal_carb_data_turb,TD47data_turb,'o');
% title('Varying Trans_t')
% ylabel('T\Delta_{47}')
% xlabel('cal/\Sigma carbonate')
%
% % figure (2)
% % p2=plot(FP_output(:,1),FP_output(:,3));
% % hold on
% % scatter(d18Odata_turb,TD47data_turb,'o');
% % title('Varying Trans_t')
% % ylabel('TD47')
% % xlabel('d18O(permil VPDB)')
% %
% % figure (3)
% % p3=plot(FP_output(:,2),FP_output(:,3));
% % hold on
% % scatter(d13Cdata_turb,TD47data_turb,'o');
% % title('Varying Trans_t')
% % ylabel('TD47')
% % xlabel('d13C(permil VPDB)')
天天Matlab代码科研顾问
- 粉丝: 3w+
- 资源: 2588
最新资源
- 单相PWM整流simulink仿真 输入电压220v有效值 输出电压500v纹波在1%以内 功率因数为1 电流THD<5% 开关频率20k
- dfig0522MATLAB simulink双馈风机包涵机侧和网侧控制
- 两相交错并联同步整流双向Buck Boost变器仿真 所有开关管均可实现ZVs软开关 Buck模式 输入:200-360VDC 额定280VDC 输出:140VDC 10A 开关频率:10kHz B
- jQuery实现左右切换全屏轮播图特效源码.zip
- 函数组件非受控组件实现评论
- 基于Vue+nodejs的电商管理系统.doc
- Java的jdk详细安装过程
- 双向buck-boost变器,dcdc变器 采用电压外环,电流内环控制 有三种工作模式,恒功率模式,恒电流模式,稳压模式,三个模式分别在不同电池
- jQuery+Slick插件实现游戏人物轮播展示切换特效源码.zip
- 760415995835652拓扑.zip
- 基于Springboot+Vue的宿舍管理系统论文
- ZYNQ 工程源代码 功能:实现PL和PS端通过ddr3的axi-dma读和写进行数据交互,PS端可通过gpio控制axi-dma读写模块的使能,PS端可通过axi-lite寄存器配置dma的读和写的
- 蚁群算法融合动态窗口法路径规划算法 多动态障碍物
- 基于Python的B站视频数据分析可视化系统论文
- 单级式三相光伏并网逆变器
- bsp_spi_395.c
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈