%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
result = xlsread('数据集.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
or_dim = size(result, 2); % 原始特征+输出数目
kim = 10; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(P_train, f_, 1, 1, M));
p_test = double(reshape(P_test , f_, 1, 1, N));
t_train = double(t_train)';
t_test = double(t_test)';
%% 创建模型
layers = [
imageInputLayer([f_, 1, 1]) % 输入层 输入数据规模[10, 1, 1]
fullyConnectedLayer(128) % 全连接层
reluLayer % Relu激活层
fullyConnectedLayer(64) % 全连接层
reluLayer % Relu激活层
fullyConnectedLayer(32) % 全连接层
reluLayer % Relu激活层
dropoutLayer(0.2) % Dropout层
fullyConnectedLayer(outdim) % 全连接层
regressionLayer]; % 回归层
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MaxEpochs', 500, ... % 最大迭代次数 400
'MiniBatchSize', 128, ... % 批量大小
'InitialLearnRate', 1e-3, ... % 初始学习率为0.001
'LearnRateSchedule', 'piecewise', ... % 学习率下降
'LearnRateDropFactor', 0.1, ... % 学习率下降因子 0.1
'LearnRateDropPeriod', 400, ... % 经过 400 次训练后 学习率为 0.001 * 0.1
'Shuffle', 'every-epoch', ... % 打乱数据集
'Plots', 'training-progress', ... % 画出曲线
'Verbose', false);
%% 训练模型
net = trainNetwork(p_train, t_train, layers, options);
%% 仿真预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);
%% 查看网络结构
analyzeNetwork(net)
%% 绘图
figure
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2;
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
DNN深度神经网络多变量时间序列预测(Matlab完整程序和数据) DNN深度神经网络多变量时间序列预测(Matlab完整程序和数据) DNN深度神经网络多变量时间序列预测(Matlab完整程序和数据) 输入多个特征,输出单个变量,考虑历史数据对输出变量的影响,即多变量时间序列。 运行环境Matlab2018及以上。 输出R2、MAE、MBE等评价指标.
资源推荐
资源详情
资源评论
收起资源包目录
DNN多变量时间序列.zip (2个子文件)
DNNMTS.m 5KB
数据集.xlsx 54KB
共 2 条
- 1
资源评论
前程算法屋
- 粉丝: 5474
- 资源: 782
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功