%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)';
t_test = double(t_test )';
%% 数据格式转换
for i = 1 : M
Lp_train{i, 1} = p_train(:, :, 1, i);
end
for i = 1 : N
Lp_test{i, 1} = p_test( :, :, 1, i);
end
%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [
sequenceInputLayer([f_, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[f_, 1, 1]
sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = convolution2dLayer([3, 1], 32, "Name", "conv_1"); % 卷积层 卷积核[3, 1] 步长[1, 1] 通道数 32
lgraph = addLayers(lgraph,tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
reluLayer("Name", "relu_1") % 激活层
convolution2dLayer([3, 1], 64, "Name", "conv_2") % 卷积层 卷积核[3, 1] 步长[1, 1] 通道数 64
reluLayer("Name", "relu_2")]; % 激活层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
globalAveragePooling2dLayer("Name", "gapool") % 全局平均池化层
fullyConnectedLayer(16, "Name", "fc_2") % SE注意力机制,通道数的1 / 4
reluLayer("Name", "relu_3") % 激活层
fullyConnectedLayer(64, "Name", "fc_3") % SE注意力机制,数目和通道数相同
sigmoidLayer("Name", "sigmoid")]; % 激活层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = multiplicationLayer(2, "Name", "multiplication"); % 点乘的注意力
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [
sequenceUnfoldingLayer("Name", "sequnfold") % 建立序列反折叠层
flattenLayer("Name", "flatten") % 网络铺平层
bilstmLayer(6, "Name", "bilstm", "OutputMode", "last") % BiLSTM层
fullyConnectedLayer(1, "Name", "fc") % 全连接层
regressionLayer("Name", "regressionoutput")]; % 回归层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入;
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize");
% 折叠层输出 连接 反折叠层输入
lgraph = connectLayers(lgraph, "conv_1", "relu_1"); % 卷积层输出 链接 激活层
lgraph = connectLayers(lgraph, "conv_1", "gapool"); % 卷积层输出 链接 全局平均池化
lgraph = connectLayers(lgraph, "relu_2", "multiplication/in2"); % 激活层输出 链接 相乘层
lgraph = connectLayers(lgraph, "sigmoid", "multiplication/in1"); % 全连接输出 链接 相乘层
lgraph = connectLayers(lgraph, "multiplication", "sequnfold/in"); % 点乘输出
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MaxEpochs', 1000, ... % 最大迭代次数
'InitialLearnRate', 1e-2, ... % 初始学习率为0.01
'LearnRateSchedule', 'piecewise', ... % 学习率下降
'LearnRateDropFactor', 0.1, ... % 学习率下降因子 0.5
'LearnRateDropPeriod', 700, ... % 经过700次训练后 学习率为 0.01 * 0.1
'Shuffle', 'every-epoch', ... % 每次训练打乱数据集
'Plots', 'training-progress', ... % 画出曲线
'Verbose', false);
%% 训练模型
net = trainNetwork(Lp_train, t_train, lgraph, options);
%% 模型预测
t_sim1 = predict(net, Lp_train);
t_sim2 = predict(net, Lp_test );
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);
%% 显示网络结构
analyzeNetwork(net)
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2;
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于卷积-双向长短期记忆网络结合SE注意力机制(CNN-BiLSTM-SE Attention)的回归预测 1.运行环境Matlab2020b及以上; 2.输入7个特征,输出1个变量; 3.多输入单输出数据回归预测。 CNN-BiLSTM-Attention CNN-BiLSTM-SE
资源推荐
资源详情
资源评论
收起资源包目录
基于卷积神经网路-双向长短期记忆网络结合SE注意力机制的数据回归预测.zip (4个子文件)
main.m 7KB
数据集.xlsx 15KB
1.png 69KB
2.png 54KB
共 4 条
- 1
资源评论
- yangxiangguo1232024-09-17资源很赞,希望多一些这类资源。
- tuoluxingdongggg2024-04-11资源和描述一致,质量不错,解决了我的问题,感谢资源主。
- m0_619562732023-04-04超级好的资源,很值得参考学习,对我启发很大,支持!
- 2301_771405882023-11-01怎么能有这么好的资源!只能用感激涕零来形容TAT...
前程算法屋
- 粉丝: 5512
- 资源: 782
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Spring Cloud商城项目专栏 049 支付
- sensors-18-03721.pdf
- Facebook.apk
- 推荐一款JTools的call-this-method插件
- json的合法基色来自红包东i请各位
- 项目采用YOLO V4算法模型进行目标检测,使用Deep SORT目标跟踪算法 .zip
- 针对实时视频流和静态图像实现的对象检测和跟踪算法 .zip
- 部署 yolox 算法使用 deepstream.zip
- 基于webmagic、springboot和mybatis的MagicToe Java爬虫设计源码
- 通过实时流协议 (RTSP) 使用 Yolo、OpenCV 和 Python 进行深度学习的对象检测.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功