%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%% 模型预训练
dbn.sizes = [50, 50]; % 隐藏层节点数
opts.numepochs = 500; % 训练次数
opts.batchsize = 12; % 每次训练样本个数 需满足:(M / batchsize = 整数)
opts.momentum = 0; % 动量参数
opts.alpha = 0.1; % 学习率
dbn = dbnsetup(dbn, p_train, opts); % 建立模型
dbn = dbntrain(dbn, p_train, opts); % 训练模型
%% 训练权重移植,添加输出层
nn = dbnunfoldtonn(dbn, outdim);
%% 反向调整网络
opts.numepochs = 3000; % 反向微调次数
opts.batchsize = 12; % 每次反向微调样本数 需满足:(M / batchsize = 整数)
nn.activation_function = 'sigm'; % 激活函数
nn.learningRate = 2; % 学习率
nn.momentum = 0.5; % 动量参数
nn.scaling_learningRate = 1; % 学习率的比例因子
[nn, loss] = nntrain(nn, p_train, t_train, opts); % 反向微调训练
%% 模型预测
t_sim1 = nnpredict(nn, p_train);
t_sim2 = nnpredict(nn, p_test );
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);
%% 绘制损失函数曲线
figure
plot(1 : length(loss), loss, 'b-', 'LineWidth', 1)
xlim([1, length(loss)])
xlabel('迭代次数')
ylabel('误差损失')
legend('损失函数')
title('损失函数')
grid
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2')^2 / norm(T_test - mean(T_test ))^2;
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于深度置信网络的多输入单输出回归预测(DBN)(Matlab完整程序和数据) 1.data为数据集,格式为excel,7个输入特征,1个输出特征; 2.MainDBN.m为主程序文件,运行即可,其他为函数文件,无需运行; 3.命令窗口输出R2、MAE和MBE; 4.运行版本为2018及以上
资源推荐
资源详情
资源评论
收起资源包目录
基于深度置信网络的数据回归预测.zip (17个子文件)
基于深度置信网络的数据回归预测
main.m 4KB
nnsetup.m 2KB
nnpredict.m 177B
dbntrain.m 303B
nnbp.m 2KB
tanh_opt.m 91B
nntrain.m 2KB
dbnunfoldtonn.m 362B
数据集.xlsx 15KB
nnapplygrads.m 771B
rbmtrain.m 1KB
rbmup.m 134B
nnff.m 2KB
sigm.m 66B
rbmdown.m 130B
dbnsetup.m 614B
sigmrnd.m 102B
共 17 条
- 1
资源评论
- m0_619634022023-11-16资源质量不错,和资源描述一致,内容详细,对我很有用。
前程算法屋
- 粉丝: 5474
- 资源: 782
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功