clc; clear all; close all;
load Data.mat;
[FileName,PathName,FilterIndex] = uigetfile({'*.jpg;*.tif;*.png;*.gif', ...
'所有图像文件';...
'*.*','所有文件' },'载入数字图像',...
'.\\images\\手写数字\\t0.jpg');
if isequal(FileName, 0) || isequal(PathName, 0)
return;
end
fileName = fullfile(PathName, FileName);
I = imread(fileName);
flag = 1;
I1 = Normalize_Img(I);
bw1 = Bw_Img(I1);
bw2 = Thin_Img(bw1);
bw = bw2;
sz = size(bw);
[r, c] = find(bw==1);
rect = [min(c) min(r) max(c)-min(c) max(r)-min(r)];
vs = rect(1)+rect(3)*[5/12 1/2 7/12];
hs = rect(2)+rect(4)*[1/3 1/2 2/3];
pt1 = [rect(1:2); rect(1:2)+rect(3:4)];
pt2 = [rect(1)+rect(3) rect(2); rect(1) rect(2)+rect(4)];
k1 = (pt1(1,2)-pt1(2,2)) / (pt1(1,1)-pt1(2,1));
x1 = 1:sz(2);
y1 = k1*(x1-pt1(1,1)) + pt1(1,2);
k2 = (pt2(1,2)-pt2(2,2)) / (pt2(1,1)-pt2(2,1));
x2 = 1:sz(2);
y2 = k2*(x2-pt2(1,1)) + pt2(1,2);
if flag
figure('Name', '数字识别', 'NumberTitle', 'Off', 'Units', 'Normalized', 'Position', [0.2 0.45 0.5 0.3]);
subplot(2, 2, 1); imshow(I, []); title('原图像', 'FontWeight', 'Bold');
subplot(2, 2, 2); imshow(I1, []); title('归一化图像', 'FontWeight', 'Bold');
hold on;
h = rectangle('Position', [rect(1:2)-1 rect(3:4)+2], 'EdgeColor', 'r', 'LineWidth', 2);
xlabel('数字区域标记');
subplot(2, 2, 3); imshow(bw1, []); title('二值化图像', 'FontWeight', 'Bold');
subplot(2, 2, 4); imshow(bw, [], 'Border', 'Loose'); title('细化图像', 'FontWeight', 'Bold');
hold on;
h = [];
for i = 1 : length(hs)
h = [h plot([1 sz(2)], [hs(i) hs(i)], 'r-')];
end
for i = 1 : length(vs)
h = [h plot([vs(i) vs(i)], [1 sz(1)], 'g-')];
end
h = [h plot(x1, y1, 'y-')];
h = [h plot(x2, y2, 'm-')];
legend([h(1) h(4) h(7) h(8)], {'水平线', '竖直线', '左对角线', '右对角线'}, 'Location', 'BestOutside');
hold off;
end
v{1} = [1:sz(2); repmat(hs(1), 1, sz(2))]';
v{2} = [1:sz(2); repmat(hs(2), 1, sz(2))]';
v{3} = [1:sz(2); repmat(hs(3), 1, sz(2))]';
v{4} = [repmat(vs(1), 1, sz(1)); 1:sz(1)]';
v{5} = [repmat(vs(2), 1, sz(1)); 1:sz(1)]';
v{6} = [repmat(vs(3), 1, sz(1)); 1:sz(1)]';
v{7} = [x1; y1]';
v{8} = [x2; y2]';
for i = 1 : 8
num(i) = GetImgLinePts(bw, round(v{i})-1);
end
num(9) = sum(sum(endpoints(bw)));
result = MaskRecon(Datas, num);
msgbox(sprintf('识别结果:%d', result), '提示信息', 'modal');
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
MATLAB是MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 【主页资源】 遗传算法、免疫算法、退火算法、粒子群算法、鱼群算法、蚁群算法和神经网络算法等常用智能算法的MATLAB实现,包含TSP、LQR控制器、结合量子算法、多目标优化、粒子群等matlab程序。 MATLAB计算机视觉与深度学习实战项目:直方图优化去雾技术、基于形态学的权重自适应图像去噪、多尺度形态学提取眼前节组织、基于分水岭算法的肺癌分割诊断、基于harris 的角点检测(可以直接用matlab自带的函数)、基于K均值的据类算法分割(算法时间有点久)、 区域生长算法进行肝部肿瘤分割(原始分割精度不高)、matlab编写的图像处理相关算法代码及算法原理等等。
资源推荐
资源详情
资源评论
收起资源包目录
基于知识库的手写体数字识别.zip (31个子文件)
第 08 章 基于知识库的手写体数字识别
Main_Process.m 2KB
Normalize_Img.m 116B
Bw_Img.m 112B
main.m 2KB
GetImgLinePts.m 213B
endpoints.m 227B
MaskRecon.m 198B
Thin_Img.m 58B
images
标准数字
s5.jpg 1KB
s0.jpg 1KB
s1.jpg 939B
s2.jpg 1KB
s6.jpg 1KB
s7.jpg 960B
s9.jpg 1KB
s3.jpg 1KB
s4.jpg 971B
s8.jpg 1KB
手写数字
t5.jpg 641B
t0.jpg 626B
t6.jpg 655B
t9.jpg 600B
t3.jpg 629B
t1.jpg 441B
t4.jpg 610B
t7.jpg 551B
t2.jpg 576B
t8.jpg 714B
PreProcess.m 1KB
Data.mat 688B
GetImgEndPts.m 305B
共 31 条
- 1
资源评论
枫蜜柚子茶
- 粉丝: 8976
- 资源: 5351
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功