How FreeType's rasterizer work
by David Turner
Revised 2007-Feb-01
This file is an attempt to explain the internals of the FreeType
rasterizer. The rasterizer is of quite general purpose and could
easily be integrated into other programs.
I. Introduction
II. Rendering Technology
1. Requirements
2. Profiles and Spans
a. Sweeping the Shape
b. Decomposing Outlines into Profiles
c. The Render Pool
d. Computing Profiles Extents
e. Computing Profiles Coordinates
f. Sweeping and Sorting the Spans
I. Introduction
===============
A rasterizer is a library in charge of converting a vectorial
representation of a shape into a bitmap. The FreeType rasterizer
has been originally developed to render the glyphs found in
TrueType files, made up of segments and second-order Béziers.
Meanwhile it has been extended to render third-order Bézier curves
also. This document is an explanation of its design and
implementation.
While these explanations start from the basics, a knowledge of
common rasterization techniques is assumed.
II. Rendering Technology
========================
1. Requirements
---------------
We assume that all scaling, rotating, hinting, etc., has been
already done. The glyph is thus described by a list of points in
the device space.
- All point coordinates are in the 26.6 fixed float format. The
used orientation is:
^ y
| reference orientation
|
*----> x
0
`26.6' means that 26 bits are used for the integer part of a
value and 6 bits are used for the fractional part.
Consequently, the `distance' between two neighbouring pixels is
64 `units' (1 unit = 1/64th of a pixel).
Note that, for the rasterizer, pixel centers are located at
integer coordinates. The TrueType bytecode interpreter,
however, assumes that the lower left edge of a pixel (which is
taken to be a square with a length of 1 unit) has integer
coordinates.
^ y ^ y
| |
| (1,1) | (0.5,0.5)
+-----------+ +-----+-----+
| | | | |
| | | | |
| | | o-----+-----> x
| | | (0,0) |
| | | |
o-----------+-----> x +-----------+
(0,0) (-0.5,-0.5)
TrueType bytecode interpreter FreeType rasterizer
A pixel line in the target bitmap is called a `scanline'.
- A glyph is usually made of several contours, also called
`outlines'. A contour is simply a closed curve that delimits an
outer or inner region of the glyph. It is described by a series
of successive points of the points table.
Each point of the glyph has an associated flag that indicates
whether it is `on' or `off' the curve. Two successive `on'
points indicate a line segment joining the two points.
One `off' point amidst two `on' points indicates a second-degree
(conic) Bézier parametric arc, defined by these three points
(the `off' point being the control point, and the `on' ones the
start and end points). Similarly, a third-degree (cubic) Bézier
curve is described by four points (two `off' control points
between two `on' points).
Finally, for second-order curves only, two successive `off'
points forces the rasterizer to create, during rendering, an
`on' point amidst them, at their exact middle. This greatly
facilitates the definition of successive Bézier arcs.
The parametric form of a second-order Bézier curve is:
P(t) = (1-t)^2*P1 + 2*t*(1-t)*P2 + t^2*P3
(P1 and P3 are the end points, P2 the control point.)
The parametric form of a third-order Bézier curve is:
P(t) = (1-t)^3*P1 + 3*t*(1-t)^2*P2 + 3*t^2*(1-t)*P3 + t^3*P4
(P1 and P4 are the end points, P2 and P3 the control points.)
For both formulae, t is a real number in the range [0..1].
Note that the rasterizer does not use these formulae directly.
They exhibit, however, one very useful property of Bézier arcs:
Each point of the curve is a weighted average of the control
points.
As all weights are positive and always sum up to 1, whatever the
value of t, each arc point lies within the triangle (polygon)
defined by the arc's three (four) control points.
In the following, only second-order curves are discussed since
rasterization of third-order curves is completely identical.
Here some samples for second-order curves.
* # on curve
* off curve
__---__
#-__ _-- -_
--__ _- -
--__ # \
--__ #
-#
Two `on' points
Two `on' points and one `off' point
between them
*
# __ Two `on' points with two `off'
\ - - points between them. The point
\ / \ marked `0' is the middle of the
- 0 \ `off' points, and is a `virtual
-_ _- # on' point where the curve passes.
-- It does not appear in the point
* list.
2. Profiles and Spans
---------------------
The following is a basic explanation of the _kind_ of computations
made by the rasterizer to build a bitmap from a vector
representation. Note that the actual implementation is slightly
different, due to performance tuning and other factors.
However, the following ideas remain in the same category, and are
more convenient to understand.
a. Sweeping the Shape
The best way to fill a shape is to decompose it into a number of
simple horizontal segments, then turn them on in the target
bitmap. These segments are called `spans'.
__---__
_-- -_
_- -
- \
/ \
/ \
| \
__---__ Example: filling a shape
_----------_ with spans.
_--------------
----------------\
/-----------------\ This is typically done from the top
/ \ to the bottom of the shape, in a
| | \ movement called a `sweep'.
V
__---__
_----------_
_--------------
----------------\
/-----------------\
/-------------------\
|---------------------\
In order to draw a span, the rasterizer must compute its
coordinates, which are simply the x coordinates of the shape's
contours, taken on the y scanlines.
/---/ |---| Note that there are usually
/---/ |---| several spans per scanline.
| /---/ |---|
| /---/_______|---| When rendering this shape to the
V /----------------| current scanline y, we must
/-----------------| compute the x values of the
枫蜜柚子茶
- 粉丝: 9051
- 资源: 5352
最新资源
- 电路分析基础 实验五 RLC串联谐振的multisim仿真
- 2个月涨粉8w,新玩法AI做漫画小说赛道,操作简单可批量制作,新手小白....mp4
- 高分辨率下的遥感目标分割
- 网络攻防原理与技术-实验8资料.7z
- 电机控制器,永磁同步电机调速控制软件工程PMSM,该工程主要基于DSP28335硬件控制平台,两电平IPM模块主回路,通过位置传感器,速度传感器实时检测位置和速度信号,电流传感器采集电流信号,控制器控
- 24年快手无人直播暴利变现3.0,直播间人气轻松破千上热门,普通人也能....mp4
- 2024年9月28日支付宝分成最新搬运玩法.mp4
- 西门子1200PLC模板通讯程序 modbus 包含多种通讯Modbus-RTU(485),S7通讯,Modbus-TCP,TCP IP等,博途V16及较新版本可打开,简单明了,初学者也能明白
- ICED Smart 网站部署教程文件
- 2024淘宝暴力掘金 单机500+.mp4
- 2024年最新暴力起店玩法,拼多多虚拟电商4.0,24小时实现成交,单人可以...mp4
- 2024影视解说最新玩法,AI一键生成原创影视解说, 十秒钟制作成品,解....mp4
- 2024掌握拼多多运营精髓:爆款流程、定价技巧与SKU设计实战课.mp4
- 房屋租赁推荐系统 房租租赁系统 基于协同过滤的房屋租赁推荐系统 特色功能:协同过滤推荐 对于房租租赁,结合实际场景选择用户对房子的浏览次数作为数据集,体现用户喜好度,应用余弦相似度,实现基于用户协同过
- X6程序模块 AE-10D00.GDL
- AspSweb网页服务器1.0.0.93
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈