没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论



























ISO/TC 22/SC 32
ISO/CD PAS 8800(en)
Secretariat: JISC
Road Vehicles — Safety and artificial intelligence
Véhicules routiers — Sécurité et intelligence artificielle

ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
ii
© ISO 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this
publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical,
including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can
be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
E-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland

ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
iii
Contents
Foreword ......................................................................................................................................................................................... viii
Introduction ....................................................................................................................................................................................... ix
1 Scope ....................................................................................................................................................................................... 1
2 Normative references ....................................................................................................................................................... 1
3 Terms and definitions ...................................................................................................................................................... 2
3.1 General AI-related definitions ...................................................................................................................................... 2
3.2 Data-related definitions .................................................................................................................................................. 9
3.3 General safety-related definitions............................................................................................................................ 10
3.4 Safety: Root cause-, error-and failure-related definitions ............................................................................. 13
3.5 Miscellaneous definitions ............................................................................................................................................ 15
4 Abbreviated terms .......................................................................................................................................................... 18
5 Requirements for compliance .................................................................................................................................... 19
5.1 Purpose ............................................................................................................................................................................... 19
5.2 General requirements ................................................................................................................................................... 19
5.3 Interpretations of tables and figures ...................................................................................................................... 19
6 AI within the context of road vehicles system safety engineering and basic concepts ..................... 19
6.1 Application of the ISO 26262 series for the development of AI systems ................................................. 19
6.2 Interactions with encompassing system-level safety activities .................................................................. 20
6.3 Mapping of abstraction layers between ISO 26262, ISO/IEC 22989 and this document ................. 24
6.4 Example architecture for an AI system .................................................................................................................. 27
6.5 Types of AI models ......................................................................................................................................................... 28
6.6 AI technologies of a ML model ................................................................................................................................... 28
6.7 Error concepts, fault models and causal models ............................................................................................... 29
6.7.1 Cause-and-effect chain ............................................................................................................................................. 29
6.7.2 Root cause classes ...................................................................................................................................................... 30
6.7.3 Error classification based on the safety impact ............................................................................................. 32
7 AI safety management ................................................................................................................................................... 33
7.1 Objectives ........................................................................................................................................................................... 33
7.2 Prerequisites and supporting information ........................................................................................................... 33
7.3 General requirements ................................................................................................................................................... 33
7.4 Reference AI safety lifecycle ....................................................................................................................................... 36
7.5 Iterative development paradigms for AI systems ............................................................................................. 38
7.6 Work products ................................................................................................................................................................. 40
8 Assurance arguments for AI systems ..................................................................................................................... 40
8.1 Objectives ........................................................................................................................................................................... 40
8.2 Prerequisites and supporting information ........................................................................................................... 40
8.3 General requirements ................................................................................................................................................... 41

ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
iv
8.4 AI system-specific considerations in assurance arguments.......................................................................... 41
8.5 Structuring assurance arguments for AI systems.............................................................................................. 43
8.5.1 Context of the assurance argument .................................................................................................................... 43
8.5.2 Categories of evidence ............................................................................................................................................. 44
8.6 The role of quantitative targets and qualitative arguments ......................................................................... 45
8.7 Evaluation of the assurance argument ................................................................................................................... 46
8.8 Work products ................................................................................................................................................................. 47
9 Derivationof AI safetyrequirements ....................................................................................................................... 47
9.1 Objectives ........................................................................................................................................................................... 47
9.2 Prerequisites and supporting information ........................................................................................................... 48
9.3 General requirements ................................................................................................................................................... 48
9.4 General workflow for deriving safety requirements ........................................................................................ 49
9.5 Deriving AI safety requirements on supervised machine learning ............................................................ 51
9.5.1 The need for refinedAI safety requirements .................................................................................................. 51
9.5.2 Derivation of refined AI safety requirements to manage uncertainty ................................................. 53
9.5.3 Refinement of the input space definition for AI safety lifecycle ............................................................. 56
9.5.4 Restricting the occurrence of AI output insufficiencies ............................................................................. 56
9.5.5 Metrics, measurements and threshold design ............................................................................................... 59
9.5.6 Considerations for deriving safety requirements ......................................................................................... 60
9.6 Work products ................................................................................................................................................................. 61
10 Selection of AI technologies, architectural and development measures ................................................. 61
10.1 Objectives ........................................................................................................................................................................... 61
10.2 Prerequisites ..................................................................................................................................................................... 61
10.3 General requirements ................................................................................................................................................... 62
10.4 Architecture and development process design or refinement..................................................................... 63
10.5 Examples of architectural and development measures for AI systems.................................................... 63
10.6 Work products ................................................................................................................................................................. 67
11 Data-related considerations ....................................................................................................................................... 67
11.1 Objectives ........................................................................................................................................................................... 67
11.2 Prerequisites and supporting information ........................................................................................................... 68
11.3 General requirements ................................................................................................................................................... 68
11.4 Dataset lifecycle ............................................................................................................................................................... 69
11.4.1 Datasets and the AI safety lifecycle..................................................................................................................... 69
11.4.2 Reference dataset lifecycle ..................................................................................................................................... 70
11.4.3 Dataset safety analysis ............................................................................................................................................. 71
11.4.4 Dataset requirements development ................................................................................................................... 77
11.4.5 Dataset design ............................................................................................................................................................. 80
11.4.6 Dataset implementation .......................................................................................................................................... 81
11.4.7 Dataset verification ................................................................................................................................................... 82

ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
v
11.4.8 Dataset validation ...................................................................................................................................................... 83
11.4.9 Dataset maintenance ................................................................................................................................................ 83
11.5 Work products ................................................................................................................................................................. 84
12 Verification and validation of AI system ............................................................................................................... 84
12.1 Objectives ........................................................................................................................................................................... 84
12.2 Prerequisites and supporting information ........................................................................................................... 85
12.3 General requirements ................................................................................................................................................... 85
12.4 AI/ML specific challenges to verification and validation ............................................................................... 87
12.5 Verification and validation of the AI system ........................................................................................................ 88
12.5.1 Scope of verification and validation of the AI system ................................................................................. 88
12.5.2 AI component testing ............................................................................................................................................... 90
12.5.3 Methods for testing the AI component .............................................................................................................. 92
12.5.4 AI system integration and verification .............................................................................................................. 94
12.5.5 Virtual testing vs physical testing ....................................................................................................................... 95
12.5.6 Evaluation of the safety-related performance of the AI system ............................................................. 96
12.5.7 AI systemsafety validation ..................................................................................................................................... 97
12.6 Work products ................................................................................................................................................................. 98
13 Safety analysis of AI systems ...................................................................................................................................... 98
13.1 Objectives ........................................................................................................................................................................... 98
13.2 Prerequisites and supporting information ........................................................................................................... 98
13.3 General requirements ................................................................................................................................................... 99
13.4 Safety analysis of the AI system ................................................................................................................................ 99
13.4.1 Scope of the AI safety analysis .............................................................................................................................. 99
13.4.2 Safety analysis based on the results of testing ............................................................................................. 101
13.4.3 Safety analysis techniques .................................................................................................................................... 102
13.5 Work products ............................................................................................................................................................... 103
14 Measures during operation ....................................................................................................................................... 103
14.1 Objectives ......................................................................................................................................................................... 103
14.2 Prerequisites and supporting information ......................................................................................................... 103
14.3 General requirements ................................................................................................................................................. 104
14.4 Planning for operation and continuous assurance ......................................................................................... 105
14.4.1 Safety risk of the AI system during operation phase ................................................................................. 105
14.4.2 Safety activities during the operation phase ................................................................................................ 105
14.5 Continual, periodic re-evaluation of the assurance argument ................................................................... 106
14.6 Measures to assure safety of the AI system during operation ................................................................... 107
14.6.1 General .......................................................................................................................................................................... 107
14.6.2 Technical safety measures ................................................................................................................................... 107
14.6.3 Safe operation guidance and misuse prevention in the field ................................................................. 109
14.7 Field data collection ..................................................................................................................................................... 109
剩余192页未读,继续阅读
资源评论


blackbox1975
- 粉丝: 9
- 资源: 26
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 使用Simulink搭建稳定且效果显著的有源滤波器模型:操作视频和报告资料齐备,Simulink有源滤波器模型搭建教程:稳定运行,效果显著的滤波实践,有源滤波器matlab simulink 采用si
- 极化偏转超表面之四参数化表征:Comsol求解斯托克斯参数、线偏振度、圆偏振度、偏振方位角与椭圆率角之高效方法与偏振转换效率评估,基于Comsol仿真分析的极化偏转超表面参数研究:四个斯托克斯参数与线
- brainyai-plasmo@0.86.1-内网环境「sharp问题」
- 基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型技术研究与应用展示,基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型设计与优化分析,模块化多电平流器(MMC
- 最新PHP短视频流量社群掘金系统源码
- 精品推荐-AUTOSAR汽车应用软件架构开发最佳实践教程合集.zip
- 基于SDE控件实现的电子病历H5
- 【javaWeb毕业设计全套】javaWeb传智播客网上书城项目源码(设计以及实现论文)
- 《发动机罩系统设计全解析:流程、断面设计、人机布置与包边涂胶要求详解》,《发动机罩系统设计全解析:流程、断面设计、人机布置与包边涂胶要求详解》,发动机罩系统设计指南讲述了发动机罩系统设计流程,典型断面
- 毕业设计javaweb物流配货项目源码
- 基于Matlab 2021a双三相永磁同步风力发电系统控制策略的仿真与模型构建:包含变流器开关控制与PWM技术的细节、双三相电机高效性与优越性及其对电网的稳定调节、机侧控制策略研究与应用,双三相永磁同
- 课堂行为数据集,使用labelimg手动标注的数据集,包含图片文件和xml文件,类别有、低头写字、低头看书、抬头听课、转头、举手
- 地理分析模型的面向服务包装系统的架构与实现
- POSIX标准文档,POSIX(Portable Operating System Interface)是一组标准,旨在确保不同操作系统之间的兼容性和可移植性
- 毕业设计javaWeb物资管理系统项目源码
- 基于COMSOL模拟的甲烷重整器模型:融合重整与水汽交换反应的内部加热管顺逆流加热系统研究,基于COMSOL模拟的甲烷重整器模型:融合重整与水汽交换反应的内部加热管顺逆流加热系统研究,甲烷重整器COM
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
