没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
ISO/TC 22/SC 32
ISO/CD PAS 8800(en)
Secretariat: JISC
Road Vehicles — Safety and artificial intelligence
Véhicules routiers — Sécurité et intelligence artificielle
ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
ii
© ISO 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this
publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical,
including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can
be requested from either ISO at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
E-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
iii
Contents
Foreword ......................................................................................................................................................................................... viii
Introduction ....................................................................................................................................................................................... ix
1 Scope ....................................................................................................................................................................................... 1
2 Normative references ....................................................................................................................................................... 1
3 Terms and definitions ...................................................................................................................................................... 2
3.1 General AI-related definitions ...................................................................................................................................... 2
3.2 Data-related definitions .................................................................................................................................................. 9
3.3 General safety-related definitions............................................................................................................................ 10
3.4 Safety: Root cause-, error-and failure-related definitions ............................................................................. 13
3.5 Miscellaneous definitions ............................................................................................................................................ 15
4 Abbreviated terms .......................................................................................................................................................... 18
5 Requirements for compliance .................................................................................................................................... 19
5.1 Purpose ............................................................................................................................................................................... 19
5.2 General requirements ................................................................................................................................................... 19
5.3 Interpretations of tables and figures ...................................................................................................................... 19
6 AI within the context of road vehicles system safety engineering and basic concepts ..................... 19
6.1 Application of the ISO 26262 series for the development of AI systems ................................................. 19
6.2 Interactions with encompassing system-level safety activities .................................................................. 20
6.3 Mapping of abstraction layers between ISO 26262, ISO/IEC 22989 and this document ................. 24
6.4 Example architecture for an AI system .................................................................................................................. 27
6.5 Types of AI models ......................................................................................................................................................... 28
6.6 AI technologies of a ML model ................................................................................................................................... 28
6.7 Error concepts, fault models and causal models ............................................................................................... 29
6.7.1 Cause-and-effect chain ............................................................................................................................................. 29
6.7.2 Root cause classes ...................................................................................................................................................... 30
6.7.3 Error classification based on the safety impact ............................................................................................. 32
7 AI safety management ................................................................................................................................................... 33
7.1 Objectives ........................................................................................................................................................................... 33
7.2 Prerequisites and supporting information ........................................................................................................... 33
7.3 General requirements ................................................................................................................................................... 33
7.4 Reference AI safety lifecycle ....................................................................................................................................... 36
7.5 Iterative development paradigms for AI systems ............................................................................................. 38
7.6 Work products ................................................................................................................................................................. 40
8 Assurance arguments for AI systems ..................................................................................................................... 40
8.1 Objectives ........................................................................................................................................................................... 40
8.2 Prerequisites and supporting information ........................................................................................................... 40
8.3 General requirements ................................................................................................................................................... 41
ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
iv
8.4 AI system-specific considerations in assurance arguments.......................................................................... 41
8.5 Structuring assurance arguments for AI systems.............................................................................................. 43
8.5.1 Context of the assurance argument .................................................................................................................... 43
8.5.2 Categories of evidence ............................................................................................................................................. 44
8.6 The role of quantitative targets and qualitative arguments ......................................................................... 45
8.7 Evaluation of the assurance argument ................................................................................................................... 46
8.8 Work products ................................................................................................................................................................. 47
9 Derivationof AI safetyrequirements ....................................................................................................................... 47
9.1 Objectives ........................................................................................................................................................................... 47
9.2 Prerequisites and supporting information ........................................................................................................... 48
9.3 General requirements ................................................................................................................................................... 48
9.4 General workflow for deriving safety requirements ........................................................................................ 49
9.5 Deriving AI safety requirements on supervised machine learning ............................................................ 51
9.5.1 The need for refinedAI safety requirements .................................................................................................. 51
9.5.2 Derivation of refined AI safety requirements to manage uncertainty ................................................. 53
9.5.3 Refinement of the input space definition for AI safety lifecycle ............................................................. 56
9.5.4 Restricting the occurrence of AI output insufficiencies ............................................................................. 56
9.5.5 Metrics, measurements and threshold design ............................................................................................... 59
9.5.6 Considerations for deriving safety requirements ......................................................................................... 60
9.6 Work products ................................................................................................................................................................. 61
10 Selection of AI technologies, architectural and development measures ................................................. 61
10.1 Objectives ........................................................................................................................................................................... 61
10.2 Prerequisites ..................................................................................................................................................................... 61
10.3 General requirements ................................................................................................................................................... 62
10.4 Architecture and development process design or refinement..................................................................... 63
10.5 Examples of architectural and development measures for AI systems.................................................... 63
10.6 Work products ................................................................................................................................................................. 67
11 Data-related considerations ....................................................................................................................................... 67
11.1 Objectives ........................................................................................................................................................................... 67
11.2 Prerequisites and supporting information ........................................................................................................... 68
11.3 General requirements ................................................................................................................................................... 68
11.4 Dataset lifecycle ............................................................................................................................................................... 69
11.4.1 Datasets and the AI safety lifecycle..................................................................................................................... 69
11.4.2 Reference dataset lifecycle ..................................................................................................................................... 70
11.4.3 Dataset safety analysis ............................................................................................................................................. 71
11.4.4 Dataset requirements development ................................................................................................................... 77
11.4.5 Dataset design ............................................................................................................................................................. 80
11.4.6 Dataset implementation .......................................................................................................................................... 81
11.4.7 Dataset verification ................................................................................................................................................... 82
ISO/CD PAS 8800:2023(E)
© ISO 2023 – All rights reserved
v
11.4.8 Dataset validation ...................................................................................................................................................... 83
11.4.9 Dataset maintenance ................................................................................................................................................ 83
11.5 Work products ................................................................................................................................................................. 84
12 Verification and validation of AI system ............................................................................................................... 84
12.1 Objectives ........................................................................................................................................................................... 84
12.2 Prerequisites and supporting information ........................................................................................................... 85
12.3 General requirements ................................................................................................................................................... 85
12.4 AI/ML specific challenges to verification and validation ............................................................................... 87
12.5 Verification and validation of the AI system ........................................................................................................ 88
12.5.1 Scope of verification and validation of the AI system ................................................................................. 88
12.5.2 AI component testing ............................................................................................................................................... 90
12.5.3 Methods for testing the AI component .............................................................................................................. 92
12.5.4 AI system integration and verification .............................................................................................................. 94
12.5.5 Virtual testing vs physical testing ....................................................................................................................... 95
12.5.6 Evaluation of the safety-related performance of the AI system ............................................................. 96
12.5.7 AI systemsafety validation ..................................................................................................................................... 97
12.6 Work products ................................................................................................................................................................. 98
13 Safety analysis of AI systems ...................................................................................................................................... 98
13.1 Objectives ........................................................................................................................................................................... 98
13.2 Prerequisites and supporting information ........................................................................................................... 98
13.3 General requirements ................................................................................................................................................... 99
13.4 Safety analysis of the AI system ................................................................................................................................ 99
13.4.1 Scope of the AI safety analysis .............................................................................................................................. 99
13.4.2 Safety analysis based on the results of testing ............................................................................................. 101
13.4.3 Safety analysis techniques .................................................................................................................................... 102
13.5 Work products ............................................................................................................................................................... 103
14 Measures during operation ....................................................................................................................................... 103
14.1 Objectives ......................................................................................................................................................................... 103
14.2 Prerequisites and supporting information ......................................................................................................... 103
14.3 General requirements ................................................................................................................................................. 104
14.4 Planning for operation and continuous assurance ......................................................................................... 105
14.4.1 Safety risk of the AI system during operation phase ................................................................................. 105
14.4.2 Safety activities during the operation phase ................................................................................................ 105
14.5 Continual, periodic re-evaluation of the assurance argument ................................................................... 106
14.6 Measures to assure safety of the AI system during operation ................................................................... 107
14.6.1 General .......................................................................................................................................................................... 107
14.6.2 Technical safety measures ................................................................................................................................... 107
14.6.3 Safe operation guidance and misuse prevention in the field ................................................................. 109
14.7 Field data collection ..................................................................................................................................................... 109
剩余192页未读,继续阅读
资源评论
blackbox1975
- 粉丝: 9
- 资源: 28
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- (cuda12.4)causal-conv1d-cuda.cp310-win-amd64.pyd
- comsol多物理场仿真,电磁热分析,损耗计算,微波仿真
- 基于Windows的MFC标准框架开发的简易画图工具,可以作为C++语言、面向对象编程、MFC框架的学习练手.zip
- 课程设计 基于Python+tkinter+SQLServer实现的图书管理系统源码
- COMSOL代做 声子晶体仿真,一维,二维,三维能带图,带隙图,色散曲线,弹性波,声波
- C++-植物大战僵尸MFC版本-2025
- (cuda12.4)causal-conv1d-1.1.1-cp310-cp310-win-amd64.whl
- CAD贱人工具箱6.0免注册版
- 西门子1500 大型程序fanuc 机器人汽车焊装自动生产线程序 MES 系统通讯 大型程序fanuc机器人汽车焊装自动生产线程序程序经典结构清晰,SCL算法堆栈,梯形图和 SCL混编使用博图 V1
- 基于Hadoop平台的微博数据挖掘系统的设计与实现
- 字节跳动大模型应用实践与分享
- 20250110春节假期
- 甄嬛传之《我爱上班》诗朗诵PPT模版.pptx
- (Vim cuda12.4)selective-scan-cuda.cp310-win-amd64.pyd
- 异步电机按转子磁链直接定向SVPWM矢量控制仿真模型Matlab Simulink模型,含详细说明文档 仿真主体分为三个模块:主电路逆变模块、转子磁链定向控制模块和SVPWM模块 根据陈伯时运动控
- 字节跳动Agent企业专属AI应用创新平台
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功