/**
******************************************************************************
* @file stm32f10x_tim.c
* @author MCD Application Team
* @version V3.5.0
* @date 11-March-2011
* @brief This file provides all the TIM firmware functions.
******************************************************************************
* @attention
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_tim.h"
#include "stm32f10x_rcc.h"
/** @addtogroup STM32F10x_StdPeriph_Driver
* @{
*/
/** @defgroup TIM
* @brief TIM driver modules
* @{
*/
/** @defgroup TIM_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup TIM_Private_Defines
* @{
*/
/* ---------------------- TIM registers bit mask ------------------------ */
#define SMCR_ETR_Mask ((uint16_t)0x00FF)
#define CCMR_Offset ((uint16_t)0x0018)
#define CCER_CCE_Set ((uint16_t)0x0001)
#define CCER_CCNE_Set ((uint16_t)0x0004)
/**
* @}
*/
/** @defgroup TIM_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup TIM_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup TIM_Private_FunctionPrototypes
* @{
*/
static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
uint16_t TIM_ICFilter);
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
uint16_t TIM_ICFilter);
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
uint16_t TIM_ICFilter);
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
uint16_t TIM_ICFilter);
/**
* @}
*/
/** @defgroup TIM_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup TIM_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup TIM_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup TIM_Private_Functions
* @{
*/
/**
* @brief Deinitializes the TIMx peripheral registers to their default reset values.
* @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
* @retval None
*/
void TIM_DeInit(TIM_TypeDef* TIMx)
{
/* Check the parameters */
assert_param(IS_TIM_ALL_PERIPH(TIMx));
if (TIMx == TIM1)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);
}
else if (TIMx == TIM2)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
}
else if (TIMx == TIM3)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
}
else if (TIMx == TIM4)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
}
else if (TIMx == TIM5)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
}
else if (TIMx == TIM6)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
}
else if (TIMx == TIM7)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
}
else if (TIMx == TIM8)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);
}
else if (TIMx == TIM9)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);
}
else if (TIMx == TIM10)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);
}
else if (TIMx == TIM11)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);
}
else if (TIMx == TIM12)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, DISABLE);
}
else if (TIMx == TIM13)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, DISABLE);
}
else if (TIMx == TIM14)
{
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, DISABLE);
}
else if (TIMx == TIM15)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, DISABLE);
}
else if (TIMx == TIM16)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, DISABLE);
}
else
{
if (TIMx == TIM17)
{
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, DISABLE);
}
}
}
/**
* @brief Initializes the TIMx Time Base Unit peripheral according to
* the specified parameters in the TIM_TimeBaseInitStruct.
* @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
* @param TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef
* structure that contains the configuration information for the
* specified TIM peripheral.
* @retval None
*/
void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{
uint16_t tmpcr1 = 0;
/* Check the parameters */
assert_param(IS_TIM_ALL_PERIPH(TIMx));
assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));
tmpcr1 = TIMx->CR1;
if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || (TIMx == TIM3)||
(TIMx == TIM4) || (TIMx == TIM5))
{
/* Select the Counter Mode */
tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
}
if((TIMx != TIM6) && (TIMx != TIM7))
{
/* Set the clock division */
tmpcr1 &= (uint16_t)(~((uint16_t)TIM_CR1_CKD));
tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
}
TIMx->CR1 = tmpcr1;
/* Set the Autoreload value */
TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
/* Set the Prescaler value */
TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)|| (TIMx == TIM16) || (TIMx == TIM17))
{
/* Set the Repetition Counter value */
TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
}
/* Generate an update event to reload the Prescaler and the Repetition counter
values immediately */
TIMx->EGR = TIM_PSCReloadMode_Immediate;
}
/**
* @brief Initializes the TIMx Channel1 according to the specified
* parameters in the TIM_OCInitStruct.
* @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
* @param TIM_OCInitStru
7脚中景园0.96寸OLED驱动程序(标准库)SPI
需积分: 0 141 浏览量
更新于2024-05-17
1
收藏 3.21MB RAR 举报
"7脚中景园0.96寸OLED驱动程序(标准库)SPI"涉及的关键技术点主要包括OLED显示屏、驱动程序设计、SPI通信接口以及STM32F103C8T6微控制器的应用。在这个项目中,开发者提供了一套适用于0.96英寸OLED显示器的驱动程序,该程序基于7脚SPI接口,适用于标准库的编程模型。
我们来了解OLED(Organic Light-Emitting Diode)显示屏。OLED是一种自发光的显示技术,其优点包括高对比度、快速响应时间、广视角以及低功耗。0.96英寸的尺寸适合于各种小型设备和嵌入式系统的显示需求。中景园作为OLED显示屏的制造商,提供了适配不同应用场景的产品。
驱动程序是连接硬件与软件的桥梁,对于OLED显示屏来说,驱动程序负责解析和执行控制指令,使显示屏能够正确显示图像和文本。在这个特定的驱动程序中,开发者可能已经实现了初始化、清屏、文字与图形显示等功能,并且优化了SPI通信协议以提高传输效率。
SPI(Serial Peripheral Interface)是一种同步串行通信协议,常用于微控制器与外部设备之间的数据交换。7脚SPI通常指的是SPI接口中使用的四个基本信号线(MISO、MOSI、SCK和CS)加上电源、地线以及一个额外的信号线,例如DC或RES(复位),总共七个引脚。在本例中,这个额外的引脚可能是用于控制OLED显示屏的工作模式或者进行其他特定功能的交互。
STM32F103C8T6是一款基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统。它具有丰富的外设接口,包括SPI,使得它可以方便地与OLED显示屏进行通信。开发者利用STM32的标准库,编写了驱动程序,确保用户可以简单、高效地控制OLED显示屏。
01-0.96OLED显示屏STM32F103C8T6_SPI例程(开发板成功)这个压缩包内的文件很可能是实际的开发代码和测试实例,包括配置文件、头文件、源代码以及可能的烧录和调试信息。通过这些资源,用户可以直接在自己的STM32F103C8T6开发板上运行,实现OLED显示屏的显示功能。
总结来说,这个项目提供了针对中景园0.96寸OLED显示屏的SPI驱动程序,利用STM32F103C8T6微控制器的SPI接口实现数据传输。开发者通过标准库简化了编程过程,使得用户能够快速上手并在实际应用中使用。通过分析和理解这些关键点,开发者或使用者可以更好地理解和运用这个驱动程序,实现OLED显示屏在各种嵌入式系统中的高效应用。
面包板扎
- 粉丝: 1811
- 资源: 17
最新资源
- Matlab根据flac、pfc或其他软件导出的坐标及应力、位移数据再现云图 案例包括导出在flac6.0中导出位移的fish代码(也可以自己先准备软件导出的坐标数据及对应点的位移或应力数据,可根据需
- 拳皇97.exe拳皇972.exe拳皇973.exe
- 捕鱼达人1.exe捕鱼达人2.exe捕鱼达人3.exe
- 医疗骨折摄像检测29-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma数据集合集.rar
- ks滑块加密算法与源代码
- 医护人员检测23-YOLOv8数据集合集.rar
- 1.电力系统短路故障引起电压暂降 2.不对称短路故障分析 包括:共两份自编word+相应matlab模型 1.短路故障的发生频次以及不同类型短路故障严重程度,本文选取三类典型的不对称短路展开研究
- C#连接sap NCO组件 X64版
- 开源基于51单片机的多功能智能闹钟设计,课设毕设借鉴参考
- 深度强化学习电气工程复现文章,适合小白学习 关键词:能量管理 深度学习 强化学习 深度强化学习 能源系统 优化调度 编程语言:python平台 主题:用于能源系统优化调度的深度强化学习算法的性能比较