# YOLOv8-TensorRT
`YOLOv8` using TensorRT accelerate !
---
[![Build Status](https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fatrox%2Fsync-dotenv%2Fbadge&style=flat)](https://github.com/triple-Mu/YOLOv8-TensorRT)
[![Python Version](https://img.shields.io/badge/Python-3.8--3.10-FFD43B?logo=python)](https://github.com/triple-Mu/YOLOv8-TensorRT)
[![img](https://badgen.net/badge/icon/tensorrt?icon=azurepipelines&label)](https://developer.nvidia.com/tensorrt)
[![C++](https://img.shields.io/badge/CPP-11%2F14-yellow)](https://github.com/triple-Mu/YOLOv8-TensorRT)
[![img](https://badgen.net/github/license/triple-Mu/YOLOv8-TensorRT)](https://github.com/triple-Mu/YOLOv8-TensorRT/blob/main/LICENSE)
[![img](https://badgen.net/github/prs/triple-Mu/YOLOv8-TensorRT)](https://github.com/triple-Mu/YOLOv8-TensorRT/pulls)
[![img](https://img.shields.io/github/stars/triple-Mu/YOLOv8-TensorRT?color=ccf)](https://github.com/triple-Mu/YOLOv8-TensorRT)
---
# Prepare the environment
1. Install `CUDA` follow [`CUDA official website`](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#download-the-nvidia-cuda-toolkit).
ð RECOMMENDED `CUDA` >= 11.4
2. Install `TensorRT` follow [`TensorRT official website`](https://developer.nvidia.com/nvidia-tensorrt-8x-download).
ð RECOMMENDED `TensorRT` >= 8.4
2. Install python requirements.
``` shell
pip install -r requirements.txt
```
3. Install [`ultralytics`](https://github.com/ultralytics/ultralytics) package for ONNX export or TensorRT API building.
``` shell
pip install ultralytics
```
5. Prepare your own PyTorch weight such as `yolov8s.pt` or `yolov8s-seg.pt`.
***NOTICE:***
Please use the latest `CUDA` and `TensorRT`, so that you can achieve the fastest speed !
If you have to use a lower version of `CUDA` and `TensorRT`, please read the relevant issues carefully !
# Normal Usage
If you get ONNX from origin [`ultralytics`](https://github.com/ultralytics/ultralytics) repo, you should build engine by yourself.
You can only use the `c++` inference code to deserialize the engine and do inference.
You can get more information in [`Normal.md`](docs/Normal.md) !
Besides, other scripts won't work.
# Export End2End ONNX with NMS
You can export your onnx model by `ultralytics` API and add postprocess such as bbox decoder and `NMS` into ONNX model at the same time.
``` shell
python3 export-det.py \
--weights yolov8s.pt \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--opset 11 \
--sim \
--input-shape 1 3 640 640 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The PyTorch model you trained.
- `--iou-thres` : IOU threshold for NMS plugin.
- `--conf-thres` : Confidence threshold for NMS plugin.
- `--topk` : Max number of detection bboxes.
- `--opset` : ONNX opset version, default is 11.
- `--sim` : Whether to simplify your onnx model.
- `--input-shape` : Input shape for you model, should be 4 dimensions.
- `--device` : The CUDA deivce you export engine .
You will get an onnx model whose prefix is the same as input weights.
### Just Taste First
If you just want to taste first, you can download the onnx model which are exported by `YOLOv8` package and modified by me.
[**YOLOv8-n**](https://triplemu-shared.oss-cn-beijing.aliyuncs.com/models/yolov8n.onnx?OSSAccessKeyId=LTAI5tNk9iiMqhFC64jCcgpv&Expires=2690974569&Signature=3ct9pnRygBduWdgAtfKOQAt4PeU%3D)
[**YOLOv8-s**](https://triplemu-shared.oss-cn-beijing.aliyuncs.com/models/yolov8s.onnx?OSSAccessKeyId=LTAI5tNk9iiMqhFC64jCcgpv&Expires=10000000001690974000&Signature=cbHjUwmRsYdvilcirzjBI6%2BzmvI%3D)
[**YOLOv8-m**](https://triplemu-shared.oss-cn-beijing.aliyuncs.com/models/yolov8m.onnx?OSSAccessKeyId=LTAI5tNk9iiMqhFC64jCcgpv&Expires=101690974603&Signature=XnJnQqbKsnJSKSgqVQ41kxoeETU%3D)
[**YOLOv8-l**](https://triplemu-shared.oss-cn-beijing.aliyuncs.com/models/yolov8l.onnx?OSSAccessKeyId=LTAI5tNk9iiMqhFC64jCcgpv&Expires=2690974619&Signature=djxvNzcaFosHrMS5ylWh1R0%2Ff8E%3D)
[**YOLOv8-x**](https://triplemu-shared.oss-cn-beijing.aliyuncs.com/models/yolov8x.onnx?OSSAccessKeyId=LTAI5tNk9iiMqhFC64jCcgpv&Expires=2690974637&Signature=DMmuT2wlfBzai%2BBpYJFcmNbkMKU%3D)
# Build End2End Engine from ONNX
### 1. Build Engine by TensorRT ONNX Python api
You can export TensorRT engine from ONNX by [`build.py` ](build.py).
Usage:
``` shell
python3 build.py \
--weights yolov8s.onnx \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--fp16 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The ONNX model you download.
- `--iou-thres` : IOU threshold for NMS plugin.
- `--conf-thres` : Confidence threshold for NMS plugin.
- `--topk` : Max number of detection bboxes.
- `--fp16` : Whether to export half-precision engine.
- `--device` : The CUDA deivce you export engine .
You can modify `iou-thres` `conf-thres` `topk` by yourself.
### 2. Export Engine by Trtexec Tools
You can export TensorRT engine by [`trtexec`](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec) tools.
Usage:
``` shell
/usr/src/tensorrt/bin/trtexec \
--onnx=yolov8s.onnx \
--saveEngine=yolov8s.engine \
--fp16
```
**If you installed TensorRT by a debian package, then the installation path of `trtexec`
is `/usr/src/tensorrt/bin/trtexec`**
**If you installed TensorRT by a tar package, then the installation path of `trtexec` is under the `bin` folder in the path you decompressed**
# Build TensorRT Engine by TensorRT API
Please see more information in [`API-Build.md`](docs/API-Build.md)
***Notice !!!*** We don't support YOLOv8-seg model now !!!
# Inference
## 1. Infer with python script
You can infer images with the engine by [`infer-det.py`](infer-det.py) .
Usage:
``` shell
python3 infer-det.py \
--engine yolov8s.engine \
--imgs data \
--show \
--out-dir outputs \
--device cuda:0
```
#### Description of all arguments
- `--engine` : The Engine you export.
- `--imgs` : The images path you want to detect.
- `--show` : Whether to show detection results.
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag.
- `--device` : The CUDA deivce you use.
- `--profile` : Profile the TensorRT engine.
## 2. Infer with C++
You can infer with c++ in [`csrc/detect/end2end`](csrc/detect/end2end) .
### Build:
Please set you own librarys in [`CMakeLists.txt`](csrc/detect/end2end/CMakeLists.txt) and modify `CLASS_NAMES` and `COLORS` in [`main.cpp`](csrc/detect/end2end/main.cpp).
``` shell
export root=${PWD}
cd csrc/detect/end2end
mkdir -p build && cd build
cmake ..
make
mv yolov8 ${root}
cd ${root}
```
Usage:
``` shell
# infer image
./yolov8 yolov8s.engine data/bus.jpg
# infer images
./yolov8 yolov8s.engine data
# infer video
./yolov8 yolov8s.engine data/test.mp4 # the video path
```
# TensorRT Segment Deploy
Please see more information in [`Segment.md`](docs/Segment.md)
# TensorRT Pose Deploy
Please see more information in [`Pose.md`](docs/Pose.md)
# TensorRT Cls Deploy
Please see more information in [`Cls.md`](docs/Cls.md)
# DeepStream Detection Deploy
See more in [`README.md`](csrc/deepstream/README.md)
# Jetson Deploy
Only test on `Jetson-NX 4GB`.
See more in [`Jetson.md`](docs/Jetson.md)
# Profile you engine
If you want to profile the TensorRT engine:
Usage:
``` shell
python3 trt-profile.py --engine yolov8s.engine --device cuda:0
```
# Refuse To Use PyTorch for Model Inference !!!
If you need to break away from pytorch and use tensorrt inference,
you can get more information in [`infer-det-without-torch.py`](infer-det-without-torch.py),
the usage is the same as the pytorch version, but its performance is much worse.
You can use `cuda-python` or `pycuda` for inference.
Please install by such command:
```shell
pip install cuda-python
# or
pip install pycuda
```
Usage:
``` shell
python3 infer-det-without-torch.py \
--engine yolov8s.engine \
--imgs data \
--show \
--out-dir outputs \
--method cudart
```
#### Descrip
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv8-TensorRT-main.zip (78个子文件)
YOLOv8-TensorRT-main
export-seg.py 2KB
csrc
segment
normal
include
common.hpp 4KB
yolov8-seg.hpp 14KB
CMakeLists.txt 2KB
main.cpp 6KB
simple
include
common.hpp 4KB
yolov8-seg.hpp 13KB
CMakeLists.txt 2KB
main.cpp 6KB
cls
normal
include
common.hpp 4KB
yolov8-cls.hpp 7KB
CMakeLists.txt 2KB
main.cpp 62KB
jetson
segment
include
common.hpp 4KB
yolov8-seg.hpp 13KB
CMakeLists.txt 2KB
main.cpp 6KB
detect
include
yolov8.hpp 10KB
common.hpp 4KB
CMakeLists.txt 2KB
main.cpp 5KB
pose
include
common.hpp 4KB
yolov8-pose.hpp 13KB
CMakeLists.txt 2KB
main.cpp 7KB
deepstream
deepstream_app_config.txt 3KB
CMakeLists.txt 2KB
config_yoloV8.txt 3KB
custom_bbox_parser
nvdsparsebbox_yoloV8.cpp 5KB
labels.txt 625B
README.md 2KB
detect
normal
include
yolov8.hpp 11KB
common.hpp 4KB
CMakeLists.txt 2KB
main.cpp 6KB
end2end
include
yolov8.hpp 10KB
common.hpp 4KB
CMakeLists.txt 2KB
main.cpp 5KB
pose
normal
include
common.hpp 4KB
yolov8-pose.hpp 13KB
CMakeLists.txt 2KB
main.cpp 7KB
data
zidane.jpg 165KB
bus.jpg 476KB
LICENSE 1KB
.pre-commit-config.yaml 646B
docs
star.md 172B
Jetson.md 5KB
Pose.md 3KB
Normal.md 2KB
Segment.md 6KB
API-Build.md 719B
Cls.md 3KB
infer-det.py 3KB
infer-seg.py 4KB
infer-det-without-torch.py 3KB
requirements.txt 105B
models
utils.py 7KB
__init__.py 556B
cudart_api.py 6KB
pycuda_api.py 5KB
api.py 13KB
common.py 6KB
engine.py 14KB
torch_utils.py 3KB
infer-seg-without-torch.py 4KB
.gitignore 2KB
export-det.py 3KB
build.py 2KB
gen_pkl.py 1KB
infer-cls-without-torch.py 2KB
README.md 8KB
infer-pose.py 4KB
infer-pose-without-torch.py 4KB
trt-profile.py 767B
config.py 17KB
infer-cls.py 2KB
共 78 条
- 1
资源评论
极乐净土0822
- 粉丝: 202
- 资源: 54
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 12Cr1MoV钢主蒸汽管道焊接工艺.pdf
- 12Cr1MoV小径管焊接操作工艺 - .pdf
- 12Cr1MoV异种钢焊接温度场的数值模拟.pdf
- 12Cr2Mo1R珠光体耐热钢的焊接 - .pdf
- 13MnNiMoNbR复合银板焊接裂纹的修复.pdf
- 12MnNiVR钢板焊接裂纹敏感性的试验研究.pdf
- 12MnNiVR钢热处理性能及大热输入焊接韧性.pdf
- 13MnNiMoNbR钢焊接工艺研究.pdf
- 13MnNiMoNbR压力容器高强钢焊接工艺研究.pdf
- 14Cr1MoR新钢种的焊接试验研究.pdf
- 14Cr1MoR-I-0Cr18Ni10Ti复合钢板的焊接 - .pdf
- 13焊接空心球节点的承载能力分析.pdf
- 14CrMoR耐热钢压力容器的埋弧焊焊接工艺应用 - .pdf
- 14CrlMoR+0Crl8Nil0Ti复合钢板焊接.pdf
- 14YTJ108 复合保温钢筋焊接网架混凝土墙(CL建筑体系)构造.pdf
- 15×104_m3双盘浮顶油罐底板焊接工艺.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功