/* Copyright (c) 2008 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.gdata.util.common.base;
import static com.google.gdata.util.common.base.Preconditions.checkNotNull;
import java.io.IOException;
/**
* An {@link Escaper} that converts literal text into a format safe for
* inclusion in a particular context (such as an XML document). Typically (but
* not always), the inverse process of "unescaping" the text is performed
* automatically by the relevant parser.
*
* <p>For example, an XML escaper would convert the literal string {@code
* "Foo<Bar>"} into {@code "Foo<Bar>"} to prevent {@code "<Bar>"} from
* being confused with an XML tag. When the resulting XML document is parsed,
* the parser API will return this text as the original literal string {@code
* "Foo<Bar>"}.
*
* <p><b>Note:</b> This class is similar to {@link CharEscaper} but with one
* very important difference. A CharEscaper can only process Java
* <a href="http://en.wikipedia.org/wiki/UTF-16">UTF16</a> characters in
* isolation and may not cope when it encounters surrogate pairs. This class
* facilitates the correct escaping of all Unicode characters.
*
* <p>As there are important reasons, including potential security issues, to
* handle Unicode correctly if you are considering implementing a new escaper
* you should favor using UnicodeEscaper wherever possible.
*
* <p>A {@code UnicodeEscaper} instance is required to be stateless, and safe
* when used concurrently by multiple threads.
*
* <p>Several popular escapers are defined as constants in the class {@link
* CharEscapers}. To create your own escapers extend this class and implement
* the {@link #escape(int)} method.
*
*
*/
public abstract class UnicodeEscaper implements Escaper {
/** The amount of padding (chars) to use when growing the escape buffer. */
private static final int DEST_PAD = 32;
/**
* Returns the escaped form of the given Unicode code point, or {@code null}
* if this code point does not need to be escaped. When called as part of an
* escaping operation, the given code point is guaranteed to be in the range
* {@code 0 <= cp <= Character#MAX_CODE_POINT}.
*
* <p>If an empty array is returned, this effectively strips the input
* character from the resulting text.
*
* <p>If the character does not need to be escaped, this method should return
* {@code null}, rather than an array containing the character representation
* of the code point. This enables the escaping algorithm to perform more
* efficiently.
*
* <p>If the implementation of this method cannot correctly handle a
* particular code point then it should either throw an appropriate runtime
* exception or return a suitable replacement character. It must never
* silently discard invalid input as this may constitute a security risk.
*
* @param cp the Unicode code point to escape if necessary
* @return the replacement characters, or {@code null} if no escaping was
* needed
*/
protected abstract char[] escape(int cp);
/**
* Scans a sub-sequence of characters from a given {@link CharSequence},
* returning the index of the next character that requires escaping.
*
* <p><b>Note:</b> When implementing an escaper, it is a good idea to override
* this method for efficiency. The base class implementation determines
* successive Unicode code points and invokes {@link #escape(int)} for each of
* them. If the semantics of your escaper are such that code points in the
* supplementary range are either all escaped or all unescaped, this method
* can be implemented more efficiently using {@link CharSequence#charAt(int)}.
*
* <p>Note however that if your escaper does not escape characters in the
* supplementary range, you should either continue to validate the correctness
* of any surrogate characters encountered or provide a clear warning to users
* that your escaper does not validate its input.
*
* <p>See {@link PercentEscaper} for an example.
*
* @param csq a sequence of characters
* @param start the index of the first character to be scanned
* @param end the index immediately after the last character to be scanned
* @throws IllegalArgumentException if the scanned sub-sequence of {@code csq}
* contains invalid surrogate pairs
*/
protected int nextEscapeIndex(CharSequence csq, int start, int end) {
int index = start;
while (index < end) {
int cp = codePointAt(csq, index, end);
if (cp < 0 || escape(cp) != null) {
break;
}
index += Character.isSupplementaryCodePoint(cp) ? 2 : 1;
}
return index;
}
/**
* Returns the escaped form of a given literal string.
*
* <p>If you are escaping input in arbitrary successive chunks, then it is not
* generally safe to use this method. If an input string ends with an
* unmatched high surrogate character, then this method will throw
* {@link IllegalArgumentException}. You should either ensure your input is
* valid <a href="http://en.wikipedia.org/wiki/UTF-16">UTF-16</a> before
* calling this method or use an escaped {@link Appendable} (as returned by
* {@link #escape(Appendable)}) which can cope with arbitrarily split input.
*
* <p><b>Note:</b> When implementing an escaper it is a good idea to override
* this method for efficiency by inlining the implementation of
* {@link #nextEscapeIndex(CharSequence, int, int)} directly. Doing this for
* {@link PercentEscaper} more than doubled the performance for unescaped
* strings (as measured by {@link CharEscapersBenchmark}).
*
* @param string the literal string to be escaped
* @return the escaped form of {@code string}
* @throws NullPointerException if {@code string} is null
* @throws IllegalArgumentException if invalid surrogate characters are
* encountered
*/
public String escape(String string) {
int end = string.length();
int index = nextEscapeIndex(string, 0, end);
return index == end ? string : escapeSlow(string, index);
}
/**
* Returns the escaped form of a given literal string, starting at the given
* index. This method is called by the {@link #escape(String)} method when it
* discovers that escaping is required. It is protected to allow subclasses
* to override the fastpath escaping function to inline their escaping test.
* See {@link CharEscaperBuilder} for an example usage.
*
* <p>This method is not reentrant and may only be invoked by the top level
* {@link #escape(String)} method.
*
* @param s the literal string to be escaped
* @param index the index to start escaping from
* @return the escaped form of {@code string}
* @throws NullPointerException if {@code string} is null
* @throws IllegalArgumentException if invalid surrogate characters are
* encountered
*/
protected final String escapeSlow(String s, int index) {
int end = s.length();
// Get a destination buffer and setup some loop variables.
char[] dest = DEST_TL.get();
int destIndex = 0;
int unescapedChunkStart = 0;
while (index < end) {
int cp = codePointAt(s, index, end);
if (cp < 0) {
throw new IllegalArgumentException(
"Trailing high surrogate at end of input");
}
char[] escaped = escape(cp);
if (escaped != null) {
int charsSkipped