训练:在训练的时候我们会将图片集中的图片一次次的输入到神经网络里面去,然后会一次次得到该图片在每个分类下的分数,每当我们得出了一个分数数组之后我们可以计算当前的神经网络的损失值(当前的网络准确率越高损失值越低),有了损失值,我们的目标就是降低损失值。了解导数的同学都知道我们可以通过求导损失值函数得到让损失值降低的梯度方向,然后反馈到神经网络中。就这样一次次的循环,让损失值降到最低。
2.测试:当我们将神经网络训练到了一个最佳的状态,我们就可以将我们需要进行分类的图片,输入到神经网络中,得到最终神经网络对该图片分类的结果。
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
评论0
最新资源