function [d]=main(jpg)
close all
clc
web -browser http://www.ilovematlab.cn/thread-23239-1-1.html
I=imread('car2.jpg');
figure(1),imshow(I);title('原图')
I1=rgb2gray(I);
figure(2),subplot(1,2,1),imshow(I1);title('灰度图');
figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');
I2=edge(I1,'robert',0.15,'both');
figure(3),imshow(I2);title('robert算子边缘检测')
se=[1;1;1];
I3=imerode(I2,se);
figure(4),imshow(I3);title('腐蚀后图像');
se=strel('rectangle',[25,25]);
I4=imclose(I3,se);
figure(5),imshow(I4);title('平滑图像的轮廓');
I5=bwareaopen(I4,2000);
figure(6),imshow(I5);title('从对象中移除小对象');
[y,x,z]=size(I5);
myI=double(I5);
tic
Blue_y=zeros(y,1);
for i=1:y
for j=1:x
if(myI(i,j,1)==1)
Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计
end
end
end
[temp MaxY]=max(Blue_y);%Y方向车牌区域确定
PY1=MaxY;
while ((Blue_y(PY1,1)>=5)&&(PY1>1))
PY1=PY1-1;
end
PY2=MaxY;
while ((Blue_y(PY2,1)>=5)&&(PY2<y))
PY2=PY2+1;
end
IY=I(PY1:PY2,:,:);
%%%%%% X方向 %%%%%%%%%
Blue_x=zeros(1,x);%进一步确定x方向的车牌区域
for j=1:x
for i=PY1:PY2
if(myI(i,j,1)==1)
Blue_x(1,j)= Blue_x(1,j)+1;
end
end
end
PX1=1;
while ((Blue_x(1,PX1)<3)&&(PX1<x))
PX1=PX1+1;
end
PX2=x;
while ((Blue_x(1,PX2)<3)&&(PX2>PX1))
PX2=PX2-1;
end
PX1=PX1-1;%对车牌区域的校正
PX2=PX2+1;
dw=I(PY1:PY2-8,PX1:PX2,:);
t=toc;
figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');
figure(7),subplot(1,2,2),imshow(dw),title('定位剪切后的彩色车牌图像')
imwrite(dw,'dw.jpg');
[filename,filepath]=uigetfile('dw.jpg','输入一个定位裁剪后的车牌图像');
jpg=strcat(filepath,filename);
a=imread('dw.jpg');
b=rgb2gray(a);
imwrite(b,'1.车牌灰度图像.jpg');
figure(8);subplot(3,2,1),imshow(b),title('1.车牌灰度图像')
g_max=double(max(max(b)));
g_min=double(min(min(b)));
T=round(g_max-(g_max-g_min)/3); % T 为二值化的阈值
[m,n]=size(b);
d=(double(b)>=T); % d:二值图像
imwrite(d,'2.车牌二值图像.jpg');
figure(8);subplot(3,2,2),imshow(d),title('2.车牌二值图像')
figure(8),subplot(3,2,3),imshow(d),title('3.均值滤波前')
% 滤波
h=fspecial('average',3);
d=im2bw(round(filter2(h,d)));
imwrite(d,'4.均值滤波后.jpg');
figure(8),subplot(3,2,4),imshow(d),title('4.均值滤波后')
% 某些图像进行操作
% 膨胀或腐蚀
% se=strel('square',3); % 使用一个3X3的正方形结果元素对象对创建的图像进行膨胀
% 'line'/'diamond'/'ball'...
se=eye(2); % eye(n) returns the n-by-n identity matrix 单位矩阵
[m,n]=size(d);
if bwarea(d)/m/n>=0.365
d=imerode(d,se);
elseif bwarea(d)/m/n<=0.235
d=imdilate(d,se);
end
imwrite(d,'5.膨胀或腐蚀处理后.jpg');
figure(8),subplot(3,2,5),imshow(d),title('5.膨胀或腐蚀处理后')
% 寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割
d=qiege(d);
[m,n]=size(d);
figure,subplot(2,1,1),imshow(d),title(n)
k1=1;k2=1;s=sum(d);j=1;
while j~=n
while s(j)==0
j=j+1;
end
k1=j;
while s(j)~=0 && j<=n-1
j=j+1;
end
k2=j-1;
if k2-k1>=round(n/6.5)
[val,num]=min(sum(d(:,[k1+5:k2-5])));
d(:,k1+num+5)=0; % 分割
end
end
% 再切割
d=qiege(d);
% 切割出 7 个字符
y1=10;y2=0.25;flag=0;word1=[];
while flag==0
[m,n]=size(d);
left=1;wide=0;
while sum(d(:,wide+1))~=0
wide=wide+1;
end
if wide<y1 % 认为是左侧干扰
d(:,[1:wide])=0;
d=qiege(d);
else
temp=qiege(imcrop(d,[1 1 wide m]));
[m,n]=size(temp);
all=sum(sum(temp));
two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));
if two_thirds/all>y2
flag=1;word1=temp; % WORD 1
end
d(:,[1:wide])=0;d=qiege(d);
end
end
% 分割出第二个字符
[word2,d]=getword(d);
% 分割出第三个字符
[word3,d]=getword(d);
% 分割出第四个字符
[word4,d]=getword(d);
% 分割出第五个字符
[word5,d]=getword(d);
% 分割出第六个字符
[word6,d]=getword(d);
% 分割出第七个字符
[word7,d]=getword(d);
subplot(5,7,1),imshow(word1),title('1');
subplot(5,7,2),imshow(word2),title('2');
subplot(5,7,3),imshow(word3),title('3');
subplot(5,7,4),imshow(word4),title('4');
subplot(5,7,5),imshow(word5),title('5');
subplot(5,7,6),imshow(word6),title('6');
subplot(5,7,7),imshow(word7),title('7');
[m,n]=size(word1);
% 商用系统程序中归一化大小为 40*20,此处演示
word1=imresize(word1,[40 20]);
word2=imresize(word2,[40 20]);
word3=imresize(word3,[40 20]);
word4=imresize(word4,[40 20]);
word5=imresize(word5,[40 20]);
word6=imresize(word6,[40 20]);
word7=imresize(word7,[40 20]);
subplot(5,7,15),imshow(word1),title('1');
subplot(5,7,16),imshow(word2),title('2');
subplot(5,7,17),imshow(word3),title('3');
subplot(5,7,18),imshow(word4),title('4');
subplot(5,7,19),imshow(word5),title('5');
subplot(5,7,20),imshow(word6),title('6');
subplot(5,7,21),imshow(word7),title('7');
imwrite(word1,'1.jpg');
imwrite(word2,'2.jpg');
imwrite(word3,'3.jpg');
imwrite(word4,'4.jpg');
imwrite(word5,'5.jpg');
imwrite(word6,'6.jpg');
imwrite(word7,'7.jpg');
liccode=char(['0':'9' 'A':'Z' '苏豫陕鲁']); %建立自动识别字符代码表
SubBw2=zeros(40,20);
l=1;
for I=1:7
ii=int2str(I);
t=imread([ii,'.jpg']);
SegBw2=imresize(t,[40 20],'nearest');
if l==1 %第一位汉字识别
kmin=37;
kmax=40;
elseif l==2 %第二位 A~Z 字母识别
kmin=11;
kmax=36;
else l>=3 %第三位以后是字母或数字识别
kmin=1;
kmax=36;
end
for k2=kmin:kmax
fname=strcat('字符模板\',liccode(k2),'.jpg');
SamBw2 = imread(fname);
for i=1:40
for j=1:20
SubBw2(i,j)=SegBw2(i,j)-SamBw2(i,j);
end
end
% 以上相当于两幅图相减得到第三幅图
Dmax=0;
for k1=1:40
for l1=1:20
if ( SubBw2(k1,l1) > 0 | SubBw2(k1,l1) <0 )
Dmax=Dmax+1;
end
end
end
Error(k2)=Dmax;
end
Error1=Error(kmin:kmax);
MinError=min(Error1);
findc=find(Error1==MinError);
Code(l*2-1)=liccode(findc(1)+kmin-1);
Code(l*2)=' ';
l=l+1;
end
figure(10),imshow(dw),title (['车牌号码:', Code],'Color','b');
没有合适的资源?快使用搜索试试~ 我知道了~
基于MATLAB实现车牌识别,包括定位、分割和字符识别,识别方法是神经网络+使用说明文档.rar
共65个文件
jpg:57个
m:3个
db:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 173 浏览量
2024-05-22
16:23:12
上传
评论
收藏 646KB RAR 举报
温馨提示
CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现车牌识别,包括定位、分割和字符识别,识别方法是神经网络+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
资源推荐
资源详情
资源评论
收起资源包目录
基于MATLAB实现车牌识别,包括定位、分割和字符识别,识别方法是神经网络+使用说明文档.rar (65个子文件)
使用说明文档.md 13KB
车牌识别
2.jpg 676B
Thumbs.db 60KB
qiege.m 383B
car3.bmp 1.45MB
5.膨胀或腐蚀处理后.jpg 8KB
2.车牌二值图像.jpg 8KB
6.jpg 829B
1.jpg 851B
main.m 6KB
dw.jpg 8KB
1.车牌灰度图像.jpg 6KB
car2.jpg 58KB
5.jpg 814B
main.m.bak 6KB
car1.jpg 22KB
4.均值滤波后.jpg 8KB
getword.m 729B
3.jpg 768B
7.jpg 808B
4.jpg 804B
字符模板
Y.jpg 668B
辽.jpg 14KB
C.jpg 771B
苏.jpg 824B
2.jpg 12KB
E.jpg 12KB
Z.jpg 12KB
Thumbs.db 179KB
N.jpg 12KB
k.jpg 764B
6.jpg 829B
S.jpg 12KB
M.jpg 611B
R.jpg 12KB
1.jpg 11KB
L.jpg 11KB
J.jpg 566B
B.jpg 807B
F.jpg 11KB
京.jpg 14KB
P.jpg 656B
5.jpg 12KB
0.jpg 660B
T.jpg 11KB
浙.jpg 787B
A.jpg 803B
G.jpg 12KB
8.jpg 774B
陕.jpg 867B
D.jpg 12KB
X.jpg 12KB
W.jpg 12KB
U.jpg 12KB
I.jpg 11KB
Q.jpg 12KB
3.jpg 815B
鲁.jpg 851B
7.jpg 583B
O.jpg 12KB
H.jpg 663B
V.jpg 793B
9.jpg 778B
豫.jpg 918B
4.jpg 12KB
共 65 条
- 1
资源评论
IT狂飙
- 粉丝: 4825
- 资源: 2654
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 学校课程软件工程常见10道题目以及答案demo
- javaweb新手开发中常见的目录结构讲解
- 新手小白的git使用的手册入门学习demo
- 基于Java观察者模式的info-express多对多广播通信框架设计源码
- 利用python爬取豆瓣电影评分简单案例demo
- 机器人开发中常见的几道问题以及答案demo
- 基于SpringBoot和layuimini的简洁美观后台权限管理系统设计源码
- 实验报告五六代码.zip
- hdw-dubbo-ui基于vue、element-ui构建开发,实现后台管理前端功能.zip
- (Grafana + Zabbix + ASP.NET Core 2.1 + ECharts + Dapper + Swagger + layuiAdmin)基于角色授权的权限体系.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功