<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="1000"></a>
## YOLO V5s Bdd100k training
The following documents is necessary for my project:
- models/custom_yolov5s.yaml
- models/uc_data.yaml
- data/bdd100k.names
- weights/yolov5s.pt
- yolov5s_training_bdd100k.ipynb
- Bdd_preprocessing.ipynb
The process documents of training with pre-trained weights located in the `runs/exp0_yolov5s_bdd_prew`
The process documents of training from scratch located in the `yolov5s_bdd100k/runs/exp1_yolov5s_bdd`
The yolov5s model arcitecture image is `yolov5s_bdd.png`
The 4k test.video was shown in the bilibili website: **https://www.bilibili.com/video/BV1sz4y1Q7wi/**
I provide the preprocessed Bdd100k dataset: **https://1drv.ms/u/s!An7G4eYRvZzthI5HCnVaEGvrdiDWAw?e=v6C4US**
## YOLO V5 Originial Readme
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<img src="https://user-images.githubusercontent.com/26833433/85340570-30360a80-b49b-11ea-87cf-bdf33d53ae15.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, faster inference and improved mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
- **May 27, 2020**: Public release of repo. YOLOv5 models are SOTA among all known YOLO implementations.
- **April 1, 2020**: Start development of future [YOLOv3](https://github.com/ultralytics/yolov3)/[YOLOv4](https://github.com/AlexeyAB/darknet)-based PyTorch models in a range of compound-scaled sizes.
## Pretrained Checkpoints
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv5s](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 36.6 | 36.6 | 55.8 | **2.1ms** | **476** || 7.5M | 13.2B
| [YOLOv5m](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 43.4 | 43.4 | 62.4 | 3.0ms | 333 || 21.8M | 39.4B
| [YOLOv5l](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 46.6 | 46.7 | 65.4 | 3.9ms | 256 || 47.8M | 88.1B
| [YOLOv5x](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | **48.4** | **48.4** | **66.9** | 6.1ms | 164 || 89.0M | 166.4B
| [YOLOv3-SPP](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
## Requirements
Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
```bash
$ pip install -U -r requirements.txt
```
## Tutorials
* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
* [Kaggle](https://www.kaggle.com/ultralytics/yolov5-tutorial)
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Google Cloud Quickstart](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
## Inference
Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
```bash
$ python detect.py --source file.jpg # image
file.mp4 # video
./dir # directory
0 # webcam
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on examples in the `./inference/images` folder:
```bash
$ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)
image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
Results saved to /content/yolov5/inference/output
```
<img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
## Reproduce Our Training
Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 48
yolov5l 32
yolov5x 16
```
<img src="https:
没有合适的资源?快使用搜索试试~ 我知道了~
在 Bdd100k 数据集上训练 yolo v5 对象检测模型.zip
共85个文件
yaml:17个
py:16个
jpg:14个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 143 浏览量
2024-11-26
14:46:10
上传
评论
收藏 97.7MB ZIP 举报
温馨提示
在 Bdd100k 数据集上训练 yolo v5 对象检测模型YOLO V5s Bdd100k 训练我的项目需要以下文件模型/custom_yolov5s.yaml模型/uc_data.yaml数据/bdd100k.名称权重/yolov5s.ptyolov5s_training_bdd100k.ipynbbdd_预处理.ipynb使用预训练权重进行训练的过程文档位于runs/exp0_yolov5s_bdd_prew从头开始培训的流程文件位于yolov5s_bdd100k/runs/exp1_yolov5s_bddyolov5s 模型架构图如下yolov5s_bdd.png4k 测试视频在 bilibili 网站上展示https://www.bilibili.com/video/BV1sz4y1Q7wi/我提供预处理的 Bdd100k 数据集https://1drv.ms/u/s!An7G4eYRvZzthI5HCnVaEGvrdiDWAw? e=v6C4USYOLO V5 原始自述文件此存储库代表 Ultralytics 对未来对象检测
资源推荐
资源详情
资源评论
收起资源包目录
在 Bdd100k 数据集上训练 yolo v5 对象检测模型.zip (85个子文件)
inference
output
street.jpg 273KB
street.txt 519B
images
zidane.jpg 165KB
bus.jpg 476KB
street.jpg 232KB
yolov5s_bdd.png 3.19MB
标签.txt 4B
Format.py 25KB
weights
yolov5s.pt 14.46MB
download_weights.sh 244B
data
coco128.yaml 1KB
bdd100k.names 99B
get_voc.sh 6KB
coco.yaml 2KB
voc.yaml 628B
get_coco2017.sh 1KB
LICENSE 34KB
yolov5s_training_bdd100k.html 10.56MB
hubconf.py 3KB
runs
exp1_yolov5s_bdd
results.txt 44KB
opt.yaml 315B
events.out.tfevents.1595039721.iav-linux.3926.0 4.84MB
weights
last_yolov5s_bdd.pt 14.15MB
best_yolov5s_bdd.pt 14.15MB
test_batch0_pred.jpg 424KB
hyp.yaml 242B
train_batch0.jpg 583KB
train_batch1.jpg 637KB
results.png 206KB
train_batch2.jpg 596KB
labels.png 457KB
test_batch0_gt.jpg 451KB
exp0_yolov5s_bdd_prew
results.txt 44KB
opt.yaml 340B
weights
last_yolov5s_bdd_prew.pt 14.15MB
best_yolov5s_bdd_prew.pt 14.15MB
test_batch0_pred.jpg 452KB
hyp.yaml 242B
train_batch0.jpg 583KB
train_batch1.jpg 637KB
results.png 227KB
train_batch2.jpg 596KB
labels.png 457KB
test_batch0_gt.jpg 451KB
events.out.tfevents.1595382139.iav-linux.4681.0 4.84MB
utils
utils.py 50KB
__init__.py 0B
google_utils.py 4KB
activations.py 2KB
datasets.py 36KB
__pycache__
datasets.cpython-37.pyc 25KB
google_utils.cpython-37.pyc 2KB
torch_utils.cpython-37.pyc 9KB
__init__.cpython-37.pyc 126B
utils.cpython-37.pyc 38KB
torch_utils.py 9KB
Dockerfile 2KB
资源内容.txt 754B
yolov5s_training_bdd100k.ipynb 15.87MB
Bdd_preprocessing.ipynb 15KB
requirements.txt 965B
models
uc_data.yaml 210B
hub
yolov5-panet.yaml 2KB
yolov3-spp.yaml 2KB
yolov5-fpn.yaml 1KB
__init__.py 0B
custom_yolov5x.yaml 2KB
export.py 3KB
yolov5m.yaml 2KB
yolov5s.yaml 2KB
custom_yolov5s.yaml 2KB
yolov5l.yaml 2KB
common.py 4KB
experimental.py 5KB
__pycache__
yolo.cpython-37.pyc 8KB
experimental.cpython-37.pyc 6KB
__init__.cpython-37.pyc 150B
common.cpython-37.pyc 5KB
yolov5x.yaml 2KB
yolo.py 10KB
detect.py 7KB
train.py 22KB
test.py 12KB
README.md 10KB
tutorial.ipynb 3.11MB
共 85 条
- 1
资源评论
徐浪老师
- 粉丝: 8105
- 资源: 8096
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功