馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3>1. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 2: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data .. --upload_data </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
</details>
没有合适的资源?快使用搜索试试~ 我知道了~
使用yolov5算法实现cf的自瞄.zip
共165个文件
py:64个
txt:55个
yaml:24个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 199 浏览量
2024-11-26
14:29:12
上传
评论
收藏 392KB ZIP 举报
温馨提示
使用yolov5算法实现cf的自瞄 YOLOv5 是在 COCO 数据集上进行预训练的一系列对象检测架构和模型,代表了Ultralytics 对未来视觉 AI 方法的开源研究,融合了数千小时的研究和开发中积累的经验教训和最佳实践。文档请参阅YOLOv5 文档,获取有关训练、测试和部署的完整文档。视频已完成前往 v2
资源推荐
资源详情
资源评论
收起资源包目录
使用yolov5算法实现cf的自瞄.zip (165个子文件)
train.cache 8KB
ghub_mouse.cpp 2KB
msdk.dll 119KB
msdk.dll 119KB
LG_Mouse.dll 13KB
ghub_mouse.dll 12KB
ghub_mouse.dll 12KB
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
ghub_mouse.h 567B
tutorial.ipynb 48KB
LICENSE 34KB
README.md 10KB
CONTRIBUTING.md 5KB
README.md 3KB
README.md 2KB
train.cache.npy 12KB
datasets.py 44KB
general.py 33KB
train.py 31KB
wandb_utils.py 25KB
tf.py 20KB
common.py 20KB
plots.py 19KB
val.py 17KB
AI_main_pow.py 17KB
export.py 16KB
AI_main.py 15KB
detect.py 15KB
yolo.py 14KB
torch_utils.py 14KB
metrics.py 13KB
augmentations.py 11KB
aim_pipe.py 10KB
torch_yolox.py 10KB
aim_queue.py 10KB
loss.py 9KB
aim_pipe_.py 9KB
auto_aim_pipe.py 9KB
aim.py 8KB
autoanchor.py 7KB
__init__.py 6KB
hubconf.py 6KB
downloads.py 6KB
auto_aim_pro.py 6KB
auto_aim_prov2.py 5KB
auto_aim_prov2.py 5KB
util.py 5KB
experimental.py 4KB
scrnshot.py 4KB
darknet_yolo34.py 4KB
mouse.py 4KB
mouse.py 4KB
auto_aim_prov_single.py 4KB
activations.py 4KB
auto_aim.py 3KB
mousemove.py 2KB
callbacks.py 2KB
mouse_controller.py 2KB
test_pynput.py 2KB
send_input_dll.py 1KB
AI_M_BOT_N.py 1KB
resume.py 1KB
grabscreen.py 1KB
two_class_threat.py 1KB
restapi.py 1KB
logitech_km.py 1015B
sweep.py 989B
configs.py 926B
log_dataset.py 891B
dll_meta.py 853B
get_screen_handle.py 677B
get_model.py 549B
test_mouse.py 512B
example_request.py 299B
test_move.py 147B
main.py 109B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
mime.sh 780B
requirements.txt 1KB
资源内容.txt 425B
Crossfire Screenshot 2022.01.19 - 01.36.21.73.txt 228B
Crossfire Screenshot 2022.01.19 - 01.33.45.23.txt 190B
Crossfire Screenshot 2022.01.19 - 03.00.27.84.txt 190B
Crossfire Screenshot 2022.01.19 - 01.33.49.53.txt 190B
Crossfire Screenshot 2022.01.19 - 01.33.18.26.txt 152B
Crossfire Screenshot 2022.01.19 - 01.33.52.61.txt 152B
Crossfire Screenshot 2022.01.19 - 02.57.42.86.txt 152B
Crossfire Screenshot 2022.01.19 - 03.00.07.52.txt 152B
Crossfire Screenshot 2022.01.19 - 02.59.58.07.txt 152B
Crossfire Screenshot 2022.01.19 - 01.26.51.82.txt 114B
Crossfire Screenshot 2022.01.19 - 01.30.32.35.txt 114B
Crossfire Screenshot 2022.01.19 - 01.27.36.75.txt 114B
共 165 条
- 1
- 2
资源评论
徐浪老师
- 粉丝: 8496
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 机械设计液晶面板AOI检测机sw18可编辑全套设计资料100%好用.zip
- 基于扰动观察法 电导增量法的光伏电池最大功率点跟踪仿真模型 (PLECS平台搭建)
- 毕业论文设计 基于单片机的八路扫描式抢答器详细项目实例
- 基于springboot的健身房管理系统源码(java毕业设计完整源码).zip
- 基于SpringBoot的健身房管理系统源码(java毕业设计完整源码+LW).zip
- 4-上市银行常用数据整理(2000-2022年).zip
- mysql数据库JDBC驱动程序.zip
- 机械设计一次性帽子生产设备sw18全套设计资料100%好用.zip
- 基于java的车库智能管理平台开题报告.docx
- 三菱Q PLC案例程序,三菱Q系列程序 QD75MH总线伺服本案例是液晶电视导光板加工,此案例采用三菱Q系列PLC 有QD75MH定位模块SSNET总线伺服,QJ61BT11N 远程主站和远程IO
- 基于java的出租车管理系统开题报告.docx
- 基于SpringBoot的口腔诊所系统的设计与实现源码(java毕业设计完整源码).zip
- 基于java的穿戴搭配系统的开题报告.docx
- Java+Servlet+JSP+Bootstrap+Mysql学生信息管理系统源码+说明(高分项目)
- 基于SpringBoot的哈利波特书影音互动科普网站源码(java毕业设计完整源码+LW).zip
- 基于springboot的图书管理系统源码(java毕业设计完整源码+LW).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功