# YOLOv4
This is PyTorch implementation of [YOLOv4](https://github.com/AlexeyAB/darknet) which is based on [ultralytics/yolov3](https://github.com/ultralytics/yolov3).
* [[original Darknet implementation of YOLOv4]](https://github.com/AlexeyAB/darknet)
* [[ultralytics/yolov5 based PyTorch implementation of YOLOv4]](https://github.com/WongKinYiu/PyTorch_YOLOv4/tree/u5).
### development log
<details><summary> <b>Expand</b> </summary>
* `2021-10-31` - support [RS loss](https://arxiv.org/abs/2107.11669), [aLRP loss](https://arxiv.org/abs/2009.13592), [AP loss](https://arxiv.org/abs/2008.07294).
* `2021-10-30` - support [alpha IoU](https://arxiv.org/abs/2110.13675).
* `2021-10-20` - design resolution calibration methods.
* `2021-10-15` - support joint detection, instance segmentation, and semantic segmentation. [`seg-yolo`]()
* `2021-10-13` - design ratio yolo.
* `2021-09-22` - pytorch 1.9 compatibility.
* `2021-09-21` - support [DIM](https://arxiv.org/abs/1808.06670).
* `2021-09-16` - support [Dynamic Head](https://arxiv.org/abs/2106.08322).
* `2021-08-28` - design domain adaptive training.
* `2021-08-22` - design re-balance models.
* `2021-08-21` - support [simOTA](https://arxiv.org/abs/2107.08430).
* `2021-08-14` - design approximation-based methods.
* `2021-07-27` - design new decoders.
* `2021-07-22` - support 1) decoupled head, 2) anchor-free, and 3) multi positives in [yolox](https://arxiv.org/abs/2107.08430).
* `2021-07-10` - design distribution-based implicit modeling.
* `2021-07-06` - support outlooker attention. [`volo`](https://arxiv.org/abs/2106.13112)
* `2021-07-06` - design self emsemble training method.
* `2021-06-23` - design cross multi-stage correlation module.
* `2021-06-18` - design cross stage cross correlation module.
* `2021-06-17` - support cross correlation module. [`ccn`](https://arxiv.org/abs/2010.12138)
* `2021-06-17` - support attention modules. [`cbam`](https://arxiv.org/abs/1807.06521) [`saan`](https://arxiv.org/abs/2010.12138)
* `2021-04-20` - support swin transformer. [`swin`](https://arxiv.org/abs/2103.14030)
* `2021-03-16` - design new stem layers.
* `2021-03-13` - design implicit modeling. [`nn`]() [`mf`]() [`lc`]()
* `2021-01-26` - support vision transformer. [`tr`](https://arxiv.org/abs/2010.11929)
* `2021-01-26` - design mask objectness.
* `2021-01-25` - design rotate augmentation.
* `2021-01-23` - design collage augmentation.
* `2021-01-22` - support [VoVNet](https://arxiv.org/abs/1904.09730), [VoVNetv2](https://arxiv.org/abs/1911.06667).
* `2021-01-22` - support [EIoU](https://arxiv.org/abs/2101.08158).
* `2021-01-19` - support instance segmentation. [`mask-yolo`]()
* `2021-01-17` - support anchor-free-based methods. [`center-yolo`]()
* `2021-01-14` - support joint detection and classification. [`classify-yolo`]()
* `2020-01-02` - design new [PRN](https://github.com/WongKinYiu/PartialResidualNetworks) and [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks)-based models.
* `2020-12-22` - support transfer learning.
* `2020-12-18` - support non-local series self-attention blocks. [`gc`](https://arxiv.org/abs/1904.11492) [`dnl`](https://arxiv.org/abs/2006.06668)
* `2020-12-16` - support down-sampling blocks in cspnet paper. [`down-c`]() [`down-d`](https://arxiv.org/abs/1812.01187)
* `2020-12-03` - support imitation learning.
* `2020-12-02` - support [squeeze and excitation](https://arxiv.org/abs/1709.01507).
* `2020-11-26` - support multi-class multi-anchor joint detection and embedding.
* `2020-11-25` - support [joint detection and embedding](https://arxiv.org/abs/1909.12605). [`track-yolo`]()
* `2020-11-23` - support teacher-student learning.
* `2020-11-17` - pytorch 1.7 compatibility.
* `2020-11-06` - support inference with initial weights.
* `2020-10-21` - fully supported by darknet.
* `2020-09-18` - design fine-tune methods.
* `2020-08-29` - support [deformable kernel](https://arxiv.org/abs/1910.02940).
* `2020-08-25` - pytorch 1.6 compatibility.
* `2020-08-24` - support channel last training/testing.
* `2020-08-16` - design CSPPRN.
* `2020-08-15` - design deeper model. [`csp-p6-mish`]()
* `2020-08-11` - support [HarDNet](https://arxiv.org/abs/1909.00948). [`hard39-pacsp`]() [`hard68-pacsp`]() [`hard85-pacsp`]()
* `2020-08-10` - add DDP training.
* `2020-08-06` - support [DCN](https://arxiv.org/abs/1703.06211), [DCNv2](https://arxiv.org/abs/1811.11168). [`yolov4-dcn`]()
* `2020-08-01` - add pytorch hub.
* `2020-07-31` - support [ResNet](https://arxiv.org/abs/1512.03385), [ResNeXt](https://arxiv.org/abs/1611.05431), [CSPResNet](https://github.com/WongKinYiu/CrossStagePartialNetworks), [CSPResNeXt](https://github.com/WongKinYiu/CrossStagePartialNetworks). [`r50-pacsp`]() [`x50-pacsp`]() [`cspr50-pacsp`]() [`cspx50-pacsp`]()
* `2020-07-28` - support [SAM](https://arxiv.org/abs/2004.10934). [`yolov4-pacsp-sam`]()
* `2020-07-24` - update api.
* `2020-07-23` - support CUDA accelerated Mish activation function.
* `2020-07-19` - support and training tiny YOLOv4. [`yolov4-tiny`]()
* `2020-07-15` - design and training conditional YOLOv4. [`yolov4-pacsp-conditional`]()
* `2020-07-13` - support [MixUp](https://arxiv.org/abs/1710.09412) data augmentation.
* `2020-07-03` - design new stem layers.
* `2020-06-16` - support floating16 of GPU inference.
* `2020-06-14` - convert .pt to .weights for darknet fine-tuning.
* `2020-06-13` - update multi-scale training strategy.
* `2020-06-12` - design scaled YOLOv4 follow [ultralytics](https://github.com/ultralytics/yolov5). [`yolov4-pacsp-s`]() [`yolov4-pacsp-m`]() [`yolov4-pacsp-l`]() [`yolov4-pacsp-x`]()
* `2020-06-07` - design [scaling methods](https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/images/scalingCSP.png) for CSP-based models. [`yolov4-pacsp-25`]() [`yolov4-pacsp-75`]()
* `2020-06-03` - update COCO2014 to COCO2017.
* `2020-05-30` - update FPN neck to CSPFPN. [`yolov4-yocsp`]() [`yolov4-yocsp-mish`]()
* `2020-05-24` - update neck of YOLOv4 to CSPPAN. [`yolov4-pacsp`]() [`yolov4-pacsp-mish`]()
* `2020-05-15` - training YOLOv4 with Mish activation function. [`yolov4-yospp-mish`]() [`yolov4-paspp-mish`]()
* `2020-05-08` - design and training YOLOv4 with [FPN](https://arxiv.org/abs/1612.03144) neck. [`yolov4-yospp`]()
* `2020-05-01` - training YOLOv4 with Leaky activation function using PyTorch. [`yolov4-paspp`]() [`PAN`](https://arxiv.org/abs/1803.01534)
</details>
## Pretrained Models & Comparison
| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | AP<sub>S</sub><sup>test</sup> | AP<sub>M</sub><sup>test</sup> | AP<sub>L</sub><sup>test</sup> | cfg | weights |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
| **YOLOv4** | 640 | 50.0% | 68.4% | 54.7% | 30.5% | 54.3% | 63.3% | [cfg](https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/cfg/yolov4.cfg) | [weights](https://github.com/WongKinYiu/PyTorch_YOLOv4/releases/download/weights/yolov4.weights) |
| | | | | | | |
| **YOLOv4**<sub>pacsp-s</sub> | 640 | 39.0% | 57.8% | 42.4% | 20.6% | 42.6% | 50.0% | [cfg](https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/cfg/yolov4-csp-s-leaky.cfg) | [weights](https://github.com/WongKinYiu/PyTorch_YOLOv4/releases/download/weights/yolov4-pacsp-s.weights) |
| **YOLOv4**<sub>pacsp</sub> | 640 | 49.8% | 68.4% | 54.3% | 30.1% | 54.0% | 63.4% | [cfg](https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/cfg/yolov4-csp-leaky.cfg) | [weights](https://github.com/WongKinYiu/PyTorch_YOLOv4/releases/download/weights/yolov4-pacsp.weights) |
| **YOLOv4**<sub>pacsp-x</sub> | 640 | **52.2%** | **70.5%** | **56.8%** | **32.7%** | **56.3%** | **65.9%** | [cfg](https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/master/cfg/yolov4-csp-x-leaky.cfg) | [weights](https://github.com/WongKinYiu/PyTorch_YOLOv4/releases/download/weights/yolov4-pacsp-x.weights) |
| | | | | | | |
| **YOLOv4**<sub>pacsp-s-mish</sub> | 640 | 40.8% | 59.5% | 44.3% | 22.4% | 44.6% | 51.8% | [cfg](https://github.co
徐浪老师
- 粉丝: 8482
- 资源: 1万+
最新资源
- 全自动冲孔机设备工程图机械结构设计图纸和其它技术资料和技术方案非常好100%好用.zip
- 球体自动发射机机械设计结构设计图纸和其它技术资料和技术方案非常好100%好用.zip
- 先下载此软件,不要管名字.apk.1
- 通过Starter修改项目版本和设备版本的具体方法(英文版).pdf
- 毕设和企业适用springboot智慧城市管理类及机器人平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧教育平台类及金融交易平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧教育平台类及教学资源共享平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及酒店管理平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及金融数据分析平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及客户服务平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及客户服务智能化平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及区块链平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及区块链交易平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及人工智能客服平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及食品配送平台源码+论文+视频.zip
- 毕设和企业适用springboot智慧城市管理类及团队协作平台源码+论文+视频.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈