<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a>
 
![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<img src="https://user-images.githubusercontent.com/26833433/90187293-6773ba00-dd6e-11ea-8f90-cd94afc0427f.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
- **May 27, 2020**: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
## Pretrained Checkpoints
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases) | 37.0 | 37.0 | 56.2 | **2.4ms** | **416** || 7.5M | 13.2B
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases) | 44.3 | 44.3 | 63.2 | 3.4ms | 294 || 21.8M | 39.4B
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases) | 47.7 | 47.7 | 66.5 | 4.4ms | 227 || 47.8M | 88.1B
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) | **49.2** | **49.2** | **67.7** | 6.9ms | 145 || 89.0M | 166.4B
| | | | | | || |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA|**50.8**| **50.8** | **68.9** | 25.5ms | 39 || 89.0M | 354.3B
| | | | | | || |
| [YOLOv3-SPP](https://github.com/ultralytics/yolov5/releases) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment`
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
## Inference
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on example images in `data/images`:
```bash
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)
Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt... 100%|ââââââââââââââ| 14.5M/14.5M [00:00<00:00, 21.3MB/s]
Fusing layers...
Model Summary: 232 layers, 7459581 parameters, 0 gradients
image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)
im
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Yolov5 在 TorchServe 上运行(GPU 兼容)!这是用于为 Yolo v5 对象检测模型运行 TorchServe 的 dockerfile。(TorchServe(PyTorch 库)是一种灵活且易于使用的工具,用于提供从 PyTorch 导出的深度学习模型)。您只需要在资源文件夹中传递一个 yolov5 权重文件 (.pt),它就会部署一个 http 服务器,随时提供预测服务。设置 docker 镜像如果使用 GPU,则在本地构建 torchserve 映像(dockerhub 出现错误) Build the image torchserve locally for GPU before running this (cf github torchserve) https://github.com/pytorch/serve/tree/master/docker注意仅适用于 CPU,您可以直接从 docker-hub 获取图像,它应该可以正常工作。在 COLAB 上训练 yolo v5 模型后,将其移至 ressources 文件夹并修改Dock
资源推荐
资源详情
资源评论
收起资源包目录
Torchserve 服务器使用在 docker 上运行的 YoloV5 模型,使用 GPU 和静态批量推理来执行生产就绪和实时推理。.zip (44个子文件)
标签.txt 57B
ressources
index_to_name.json 28B
put_your_yolov5_weights_here.pt 0B
yolov5
weights
download_weights.sh 228B
LICENSE 34KB
hubconf.py 4KB
utils
__init__.py 0B
google_utils.py 5KB
loss.py 8KB
metrics.py 8KB
autoanchor.py 7KB
general.py 18KB
activations.py 2KB
google_app_engine
Dockerfile 821B
app.yaml 173B
additional_requirements.txt 105B
plots.py 15KB
datasets.py 37KB
torch_utils.py 9KB
Dockerfile 2KB
requirements.txt 598B
models
hub
yolov5-panet.yaml 1KB
yolov3-spp.yaml 1KB
yolov5-fpn.yaml 1KB
__init__.py 0B
export.py 4KB
yolov5m.yaml 1KB
yolov5s.yaml 1KB
yolov5l.yaml 1KB
common.py 10KB
experimental.py 6KB
yolov5x.yaml 1KB
yolo.py 12KB
detect.py 8KB
.gitignore 4KB
train.py 29KB
test.py 15KB
.dockerignore 4KB
README.md 10KB
torchserve_handler.py 6KB
Dockerfile 1KB
资源内容.txt 845B
request_screenshot.png 89KB
README.md 3KB
共 44 条
- 1
资源评论
徐浪老师
- 粉丝: 8492
- 资源: 1万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- C# winform -类火车头采集器、采集工具、任务新建和编辑、网址采集、 标签编辑、数据采集、数据发布、发布配置的修改,编辑和测试、发布模块的修改和
- 全国铁路线路数据.rar
- Vue开源项目Pure Admin二次开发:实现前后端柱状图
- 2000-2023年全国各市CPI数据集.xlsx
- 2000-2023年全国+各省通货膨胀率数据集.xlsx
- 纯电动汽车电池系统HIL测试库
- Java+JSP+Mysql实现Web学生图书管理系统源码+数据库
- 基于SSM框架的农业信息管理系统的实现
- 自己毕业论文配套代码,B站有讲解 和运行效果
- Java+JSP+Mysql实现Web学生图书管理系统源码
- 可靠有效springboot使用netty搭建TCP服务器
- Firefox-latest.exe
- Modbus测试与仿真.rar
- PCIE参考时钟架构详解:同源与非同源的区别
- Java+JSP+Mysql实现Web学生图书管理系统
- 新年海报,讲稿,文案封面
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功