function [sample,sampleLabel]=undersampling(data,Label,ClassType,C,AttVector)
% Implement under-sampling algorithm.
% It changes the training data distribution by deleting some
% lower-cost training examples until the appearances of different
% training examples are proportional to their costs. Here a routine
% similar to that used in [1] is employed, which removes redundant
% examples at first and then removes borderline examples, the latter
% can be detected using Tomek links [2].
%
%Usage:
% [sample,sampleLabel]=undersampling(data,Label,ClassType,C,attribute)
%
% sample: new training set after under-sampling to build cost-sensitive NN
% format - row indexes attributes and column indexes
% instances
% sampleLabel: class labels for instances in new training set.
% format - row vector
% data: original training set.
% format - row indexes attributes and column indexes instances
% Label: class labels for instances in original training set
% format - row vector
% ClassType: class type
% C: cost vector. the ith entry is the cost of misclassifying ith class
% instance, without considering the concrete class the instance has
% been wrongly assigned to.
% AttVector: attribute vector,1 presents for the corresponding attribute
% is nominal and 0 for numeric.
%
% Refer [1]:
% M. Kubat and S. Matwin, ※Addressing the curse of imbalanced training
% sets: one-sided selection,§ in Proceedings of the 14th International
% Conference on Machine Learning, Nashville, TN, pp.179每186, 1997.
% Refer [2]:
% I. Tomek, ※Two modifications of CNN,§ IEEE Transactions on Systems, Man
% and Cybernetics, vol.6, no.6, pp.769每772, 1976.
%check parameters
NumClass=length(ClassType);
if(length(C)~=NumClass)
error('class number does not consistent.')
end
if(size(data,2)~=size(Label))
error('instance numbers in data and Label do not consistent.')
end
if(size(data,1)~=length(AttVector))
error('attribute numbers in data and AttVector do not consistent.')
end
%compute class distribution
ClassD=zeros(1,NumClass);
for i=1:NumClass
id=find(Label==ClassType(i));
ClassData{i}=data(:,id);
ClassD(i)=length(id);
end
%compute new class distribution
cn=C./ClassD;
[tmp,baseClassID]=max(cn);
newClassD=floor(C/C(baseClassID)*ClassD(baseClassID));
%ascending C
[tmp,ascendC]=sort(C);
%prepare for VDM used in the distance function
attribute=VDM(data,Label,ClassType,AttVector);
%sampling
for i=ascendC
if(newClassD(i)<ClassD(i))
D=[];
DL=[];
K=[];
% put instances of other classes into D
for j=1:NumClass
if(j~=i)
D=[D ClassData{j}];
l=ones(1,ClassD(j)).*ClassType(j);
DL=[DL l];
end
end
%break ClassData{i} into 2 parts
n=floor(newClassD(i)/2);
id=randperm(ClassD(i));
id1=id(1:n);
id2=id(n+1:end);
% put Ni*/2 class i instances into D
D=[D ClassData{i}(:,id1)];
l=ones(1,n).*ClassType(i);
DL=[DL l];
% put the remaining class i instances into K
K=ClassData{i}(:,id2);
K_flag=zeros(1,length(id2));% 0 unchanged,1 moved to D, -1 deleted
diff=ClassD(i)-newClassD(i);
NumDelIns=0;
%check instances in K to delete redundant ones
while(NumDelIns<diff & length(find(K_flag==0))>0)
%randomly pick an unchecked instance to check
id=find(K_flag==0);
rn=round(rand(1,1)*(length(id)-1))+1;
id=id(rn);
instance=K(:,id);
target=ClassType(i);
% calculate distance which used for classification with 1-NN rule
d=dist_nominal(instance,D,attribute,AttVector);
% 1-NN
[tmp,mind]=min(d);
if(target==DL(mind))%delete
K_flag(id)= -1;
NumDelIns=NumDelIns+1;
else% move to D
K_flag(id)= 1;
end
end
%if enough instances have been deleted, merge the remaining into D
if(NumDelIns==diff)
id=find(K_flag~= -1);
D=[D K(:,id)];
l=ones(1,length(id))*ClassType(i);
DL=[DL l];
K=[];
K_flag=[];
%if not
else
%merge unredundant instances into D
id=find(K_flag==1);
D=[D K(:,id)];
l=ones(1,length(id))*ClassType(i);
DL=[DL l];
K=[];
K_flag=[];
%check the i-th class in D to delete borderline examples
idClassi=find(DL==ClassType(i));
while(NumDelIns<diff & ~isempty(idClassi))
%randomly pick up an instance from the i-th class
rn=round(rand(1,1)*(length(idClassi)-1))+1;
id=idClassi(rn);
X=D(:,id);
target=ClassType(i);
% calculate distances to identify Tomek links
d=dist_nominal(X,D,attribute,AttVector);
d(id)=inf;
iid=find(isnan(DL)==1);
d(iid)=nan;
[tmp,NearX]=min(d);
if(target~=DL(NearX))
Y=D(:,NearX);
d=dist_nominal(Y,D,attribute,AttVector);
d(NearX)=Inf;
iid=find(isnan(DL)==1);
d(iid)=nan;
[tmp,NearY]=min(d);
if(NearY==id)%delete borderline example
DL(id)=NaN;
NumDelIns=NumDelIns+1;
end
end
idClassi=setdiff(idClassi,id);
end%while
id=find(isnan(DL)==0);
D=D(:,id);
DL=DL(id);
% if it still needs to delete some instances, randomly delete
% until requirement is meet
if( isempty(idClassi) & NumDelIns<diff )
idClassi=find(DL==ClassType(i));
id=randperm(length(idClassi));
id=idClassi(id(1:diff-NumDelIns));
id=setdiff(1:length(DL),id);
D=D(:,id);
DL=DL(id);
end
end%if-elseif
%update the i-th class after under-sampling
id=find(DL==ClassType(i));
ClassData{i}=D(:,id);
end%if
end%for
sample=D;
sampleLabel=DL;
- 1
- 2
- 3
- 4
- 5
- 6
前往页