没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
图数据库的经典教材 The field of graph mining has seen a rapid explosion in recent years because of new applications in computational biology, software bug localization, and social and communication networking. This book is designed for studying various applications in the context of managing and mining graphs. Graph mining has been studied by the theoretical community extensively in the context of numerous problems such as graph partitioning, node clustering, matching, and connectivity analysis.
资源推荐
资源详情
资源评论
MANAGING AND MINING GRAPH DATA
MANAGING AND MINING GRAPH DATA
Edited by
CHARU C. AGGARWAL
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
HAIXUN WANG
Microsoft Research Asia, Beijing, China 100190
Kluwer Academic Publishers
Boston/Dordrecht/London
Contents
List of Figures xv
List of Tables xxi
Preface xxiii
1
An Introduction to Graph Data
1
Charu C. Aggarwal and Haixun Wang
1. Introduction 1
2. Graph Management and Mining Applications 3
3. Summary 8
References 9
2
Graph Data Management and Mining: A Survey of Algorithms and Applications
13
Charu C. Aggarwal and Haixun Wang
1. Introduction 13
2. Graph Data Management Algorithms 16
2.1 Indexing and Query Processing Techniques 16
2.2 Reachability Queries 19
2.3 Graph Matching 21
2.4 Keyword Search 24
2.5 Synopsis Construction of Massive Graphs 27
3. Graph Mining Algorithms 29
3.1 Pattern Mining in Graphs 29
3.2 Clustering Algorithms for Graph Data 32
3.3 Classification Algorithms for Graph Data 37
3.4 The Dynamics of Time-Evolving Graphs 40
4. Graph Applications 43
4.1 Chemical and Biological Applications 43
4.2 Web Applications 45
4.3 Software Bug Localization 51
5. Conclusions and Future Research 55
References 55
3
Graph Mining: Laws and Generators
69
Deepayan Chakrabarti, Christos Faloutsos and Mary McGlohon
1. Introduction 70
2. Graph Patterns 71
vi MANAGING AND MINING GRAPH DATA
2.1 Power Laws and Heavy-Tailed Distributions 72
2.2 Small Diameters 77
2.3 Other Static Graph Patterns 79
2.4 Patterns in Evolving Graphs 82
2.5 The Structure of Specific Graphs 84
3. Graph Generators 86
3.1 Random Graph Models 88
3.2 Preferential Attachment and Variants 92
3.3 Optimization-based generators 101
3.4 Tensor-based 108
3.5 Generators for specific graphs 113
3.6 Graph Generators: A summary 115
4. Conclusions 115
References 117
4
Query Language and Access Methods for Graph Databases
125
Huahai He and Ambuj K. Singh
1. Introduction 126
1.1 Graphs-at-a-time Queries 126
1.2 Graph Specific Optimizations 127
1.3 GraphQL 128
2. Operations on Graph Structures 129
2.1 Concatenation 130
2.2 Disjunction 131
2.3 Repetition 131
3. Graph Query Language 132
3.1 Data Model 132
3.2 Graph Patterns 133
3.3 Graph Algebra 134
3.4 FLWR Expressions 137
3.5 Expressive Power 138
4. Implementation of the Selection Operator 140
4.1 Graph Pattern Matching 140
4.2 Local Pruning and Retrieval of Feasible Mates 142
4.3 Joint Reduction of Search Space 144
4.4 Optimization of Search Order 146
5. Experimental Study 148
5.1 Biological Network 148
5.2 Synthetic Graphs 150
6. Related Work 152
6.1 Graph Query Languages 152
6.2 Graph Indexing 155
7. Future Research Directions 155
8. Conclusion 156
Appendix: Query Syntax of GraphQL 156
References 157
5
Graph Indexing
161
Xifeng Yan and Jiawei Han
1. Introduction 161
剩余632页未读,继续阅读
资源评论
l522302019
- 粉丝: 0
- 资源: 2
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功