function [model,b,X,Y] = trainlssvm(model,X,Y)
% Train the support values and the bias term of an LS-SVM for classification or function approximation
%
% >> [alpha, b] = trainlssvm({X,Y,type,gam,kernel_par,kernel,preprocess})
% >> model = trainlssvm(model)
%
% type can be 'classifier' or 'function estimation' (these strings
% can be abbreviated into 'c' or 'f', respectively). X and Y are
% matrices holding the training input and output data. The i-th
% data point is represented by the i-th row X(i,:) and Y(i,:). gam
% is the regularization parameter: for gam low minimizing of the
% complexity of the model is emphasized, for gam high, good fitting
% of the training data points is stressed. kernel_par is the
% parameter of the kernel; in the common case of an RBF kernel, a
% large sig2 indicates a stronger smoothing. The kernel_type
% indicates the function that is called to compute the kernel value
% (by default RBF_kernel). Other kernels can be used for example:
%
% >> [alpha, b] = trainlssvm({X,Y,type,gam,[d p],'poly_kernel'})
% >> [alpha, b] = trainlssvm({X,Y,type,gam,[] ,'lin_kernel'})
%
% The kernel parameter(s) are passed as a row vector, in the case
% no kernel parameter is needed, pass the empty vector!
%
% The training can either be proceeded by the preprocessing
% function ('preprocess') (by default) or not ('original'). The
% training calls the preprocessing (prelssvm, postlssvm) and the
% encoder (codelssvm) if appropiate.
%
% In the remainder of the text, the content of the cell determining
% the LS-SVM is given by {X,Y, type, gam, sig2}. However, the
% additional arguments in this cell can always be added in the
% calls.
%
% If one uses the object oriented interface (see also A.3.14), the training is done by
%
% >> model = trainlssvm(model)
% >> model = trainlssvm(model, X, Y)
%
% The status of the model checks whether a retraining is
% needed. The extra arguments X, Y allow to re-initialize the model
% with this new training data as long as its dimensions are the
% same as the old initiation.
%
% The training implementation:
%
% * The Matlab implementation: a straightforward implementation
% based on the matrix division '\' (lssvmMATLAB.m).
%
%
% This implementation allows to train a multidimensional output
% problem. If each output uses the same kernel type, kernel
% parameters and regularization parameter, this is
% straightforward. If not so, one can specify the different types
% and/or parameters as a row vector in the appropriate
% argument. Each dimension will be trained with the corresponding
% column in this vector.
%
% >> [alpha, b] = trainlssvm({X, [Y_1 ... Y_d],type,...
% [gam_1 ... gam_d], ...
% [sig2_1 ... sig2_d],...
% {kernel_1,...,kernel_d}})
%
% Full syntax
%
% 1. Using the functional interface:
%
% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})
% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})
% >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})
%
% Outputs
% alpha : N x m matrix with support values of the LS-SVM
% b : 1 x m vector with bias term(s) of the LS-SVM
% Inputs
% X : N x d matrix with the inputs of the training data
% Y : N x 1 vector with the outputs of the training data
% type : 'function estimation' ('f') or 'classifier' ('c')
% gam : Regularization parameter
% sig2 : Kernel parameter (bandwidth in the case of the 'RBF_kernel')
% kernel(*) : Kernel type (by default 'RBF_kernel')
% preprocess(*) : 'preprocess'(*) or 'original'
%
%
% * Using the object oriented interface:
%
% >> model = trainlssvm(model)
% >> model = trainlssvm({X,Y,type,gam,sig2})
% >> model = trainlssvm({X,Y,type,gam,sig2,kernel})
% >> model = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})
%
% Outputs
% model : Trained object oriented representation of the LS-SVM model
% Inputs
% model : Object oriented representation of the LS-SVM model
% X(*) : N x d matrix with the inputs of the training data
% Y(*) : N x 1 vector with the outputs of the training data
% type(*) : 'function estimation' ('f') or 'classifier' ('c')
% gam(*) : Regularization parameter
% sig2(*) : Kernel parameter (bandwidth in the case of the 'RBF_kernel')
% kernel(*) : Kernel type (by default 'RBF_kernel')
% preprocess(*) : 'preprocess'(*) or 'original'
%
% See also:
% simlssvm, initlssvm, changelssvm, plotlssvm, prelssvm, codelssvm
% Copyright (c) 2011, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlab
%
% initialise the model 'model'
%
if (iscell(model)),
model = initlssvm(model{:});
end
%
% given X and Y?
%
%model = codelssvm(model);
eval('model = changelssvm(model,''xtrain'',X);',';');
eval('model = changelssvm(model,''ytrain'',Y);',';');
eval('model = changelssvm(model,''selector'',1:size(X,1));',';');
%
% no training needed if status = 'trained'
%
if model.status(1) == 't',
if (nargout>1),
% [alpha,b]
X = model.xtrain;
Y = model.ytrain;
b = model.b;
model = model.alpha;
end
return
end
%
% control of the inputs
%
if ~((strcmp(model.kernel_type,'RBF_kernel') && length(model.kernel_pars)>=1) ||...
(strcmp(model.kernel_type,'lin_kernel') && length(model.kernel_pars)>=0) ||...
(strcmp(model.kernel_type,'MLP_kernel') && length(model.kernel_pars)>=2) ||...
(strcmp(model.kernel_type,'poly_kernel')&& length(model.kernel_pars)>=1)),
% eval('feval(model.kernel_type,model.xtrain(1,:),model.xtrain(2,:),model.kernel_pars);model.implementation=''MATLAB'';',...
% 'error(''The kernel type is not valid or to few arguments'');');
elseif (model.steps<=0),
error('steps must be larger then 0');
elseif (model.gam<=0),
error('gamma must be larger then 0');
% elseif (model.kernel_pars<=0),
% error('sig2 must be larger then 0');
elseif or(model.x_dim<=0, model.y_dim<=0),
error('dimension of datapoints must be larger than 0');
end
%
% coding if needed
%
if model.code(1) == 'c', % changed
model = codelssvm(model);
end
%
% preprocess
%
eval('if model.prestatus(1)==''c'', changed=1; else changed=0;end;','changed=0;');
if model.preprocess(1) =='p' && changed,
model = prelssvm(model);
elseif model.preprocess(1) =='o' && changed
model = postlssvm(model);
end
% clock
tic;
%
% set & control input variables and dimensions
%
if (model.type(1) == 'f'), % function
dyn_pars=[];
elseif (model.type(1) == 'c'), % class
dyn_pars=[];
end
% only MATLAB
if size(model.gam,1)>1,
model.implementation='MATLAB';
end
%
% output dimension > 1...recursive call on each dimension
%
if model.y_dim>1,
if (length(model.kernel_pars)==model.y_dim || size(model.gam,2)==model.y_dim || numel(model.kernel_type,2)==model.y_dim)
disp('multidimensional output...');
model = trainmultidimoutput(model);
%
% wich output is wanted?
%
if (nargout>1),
X = model.xtrain;
Y = model.ytrain;
b = model.b;
model = model.alpha;
else
model.duration = toc;
model.status = 'trained';
end
return
end
end
%
% call lssvmMATLAB.m
%
model = lssvmMATLAB(model);
%
% wich output is wanted?
%
if (nargout>1),
X = model.xtrain;
Y = model.ytrain;
b = model.b;
model = model.alpha;
else
model.duration = toc;
model.status = 'trained';
end
function model = trainmultidimoutput(model)
model.alpha = zeros(model.nb_data, model.y_dim);
model.b = zeros(1,model.y_dim);
for d=1:model.y_dim,
eval('gam = model.gam(:,d);','gam = model.gam(:);');
eval('sig2 = model.kerne
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Matlab实现SVM、MLP、LSSVM和 AdaBoost 模式识别(完整源码) 我们选择了分类任务中四种重要的机器学习算法,在 MATLAB 软件中实现了这些算法。 Matlab实现SVM、MLP、LSSVM和 AdaBoost 模式识别(完整源码) 我们选择了分类任务中四种重要的机器学习算法,在 MATLAB 软件中实现了这些算法。 Matlab实现SVM、MLP、LSSVM和 AdaBoost 模式识别(完整源码) 我们选择了分类任务中四种重要的机器学习算法,在 MATLAB 软件中实现了这些算法。 Matlab实现SVM、MLP、LSSVM和 AdaBoost 模式识别(完整源码) 我们选择了分类任务中四种重要的机器学习算法,在 MATLAB 软件中实现了这些算法。
资源推荐
资源详情
资源评论
收起资源包目录
Codes.zip (44个子文件)
Test.mat 4.62MB
Rasm.m 1KB
trainlssvm.m 8KB
cnnnnn.mat 367B
lssvmMATLAB.m 2KB
LS_SVM.m 2KB
Train_small.mat 4.62MB
initlssvm.m 3KB
Classifier.m 2KB
train_n.mat 1KB
pima.mat 11KB
knn.m 334B
Final_Project.m 7KB
train_label_small.mat 4.62MB
Data_n.mat 2.94MB
Naive_tr.m 389B
adab.m 4KB
labtr_n.mat 228B
train_label.mat 4.62MB
modifyTrain.m 1002B
postlssvm.m 5KB
test_label.mat 4.62MB
MLP_Method.m 3KB
dermatology.mat 3KB
Makedata.m 513B
prelssvm.m 6KB
kernel_matrix.m 3KB
SVM.m 1KB
Final_Project.fig 4KB
glass.mat 6KB
Train.mat 4.62MB
plotss.m 1KB
AdaBoost.m 510B
Data.mat 2.46MB
Naive_ts.m 441B
NNumber.mat 178B
bupa.mat 3KB
Ada_Boost_Data.mat 4.62MB
ionosphere.mat 57KB
No_features.mat 183B
NLCS.m 5KB
Data_cond.mat 1.32MB
simlssvm.m 6KB
adab_ch.m 5KB
共 44 条
- 1
资源评论
机器学习之心
- 粉丝: 2w+
- 资源: 1033
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功