![](assets/logo.png)
# Fast Segment Anything
[[`ðPaper`](https://arxiv.org/pdf/2306.12156.pdf)] [[`ð¤HuggingFace Demo`](https://huggingface.co/spaces/An-619/FastSAM)] [[`Colab demo`](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)] [[`Replicate demo & API`](https://replicate.com/casia-iva-lab/fastsam)] [~~[`OpenXLab Demo`](https://openxlab.org.cn/apps/detail/zxair/FastSAM)~~] [[`Model Zoo`](#model-checkpoints)] [[`BibTeX`](#citing-fastsam)] [[`Video Demo`](https://youtu.be/yHNPyqazYYU)]
![FastSAM Speed](assets/head_fig.png)
The **Fast Segment Anything Model(FastSAM)** is a CNN Segment Anything Model trained using only 2% of the SA-1B dataset published by SAM authors. FastSAM achieves comparable performance with
the SAM method at **50Ã higher run-time speed**.
![FastSAM design](assets/Overview.png)
**ð Updates**
- **`2023/11/28`** Recommendation: [Semantic FastSAM](https://github.com/KBH00/Semantic-Fast-SAM), which add the semantic class labels to FastSAM. Thanks to [KBH00](https://github.com/KBH00/Semantic-Fast-SAM) for this valuable contribution.
- **`2023/09/11`** Release [Training and Validation Code](https://github.com/CASIA-IVA-Lab/FastSAM/releases).
- **`2023/08/17`** Release [OpenXLab Demo](https://openxlab.org.cn/apps/detail/zxair/FastSAM). Thanks to OpenXLab Team for help.
- **`2023/07/06`** Added to [Ultralytics (YOLOv8) Model Hub](https://docs.ultralytics.com/models/fast-sam/). Thanks to [Ultralytics](https://github.com/ultralytics/ultralytics) for help ð¹.
- **`2023/06/29`** Support [text mode](https://huggingface.co/spaces/An-619/FastSAM) in HuggingFace Space. Thanks a lot to [gaoxinge](https://github.com/gaoxinge) for help ð¹.
- **`2023/06/29`** Release [FastSAM_Awesome_TensorRT](https://github.com/ChuRuaNh0/FastSam_Awsome_TensorRT). Thanks a lot to [ChuRuaNh0](https://github.com/ChuRuaNh0) for providing the TensorRT model of FastSAM ð¹.
- **`2023/06/26`** Release [FastSAM Replicate Online Demo](https://replicate.com/casia-iva-lab/fastsam). Thanks a lot to [Chenxi](https://chenxwh.github.io/) for providing this nice demo ð¹.
- **`2023/06/26`** Support [points mode](https://huggingface.co/spaces/An-619/FastSAM) in HuggingFace Space. Better and faster interaction will come soon!
- **`2023/06/24`** Thanks a lot to [Grounding-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) for Combining Grounding-DINO with FastSAM in [Grounded-FastSAM](https://github.com/IDEA-Research/Grounded-Segment-Anything/tree/main/EfficientSAM) ð¹.
## Installation
Clone the repository locally:
```shell
git clone https://github.com/CASIA-IVA-Lab/FastSAM.git
```
Create the conda env. The code requires `python>=3.7`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.
```shell
conda create -n FastSAM python=3.9
conda activate FastSAM
```
Install the packages:
```shell
cd FastSAM
pip install -r requirements.txt
```
Install CLIP:
```shell
pip install git+https://github.com/openai/CLIP.git
```
## <a name="GettingStarted"></a> Getting Started
First download a [model checkpoint](#model-checkpoints).
Then, you can run the scripts to try the everything mode and three prompt modes.
```shell
# Everything mode
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg
```
```shell
# Text prompt
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --text_prompt "the yellow dog"
```
```shell
# Box prompt (xywh)
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --box_prompt "[[570,200,230,400]]"
```
```shell
# Points prompt
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --point_prompt "[[520,360],[620,300]]" --point_label "[1,0]"
```
You can use the following code to generate all masks, make mask selection based on prompts, and visualize the results.
```shell
from fastsam import FastSAM, FastSAMPrompt
model = FastSAM('./weights/FastSAM.pt')
IMAGE_PATH = './images/dogs.jpg'
DEVICE = 'cpu'
everything_results = model(IMAGE_PATH, device=DEVICE, retina_masks=True, imgsz=1024, conf=0.4, iou=0.9,)
prompt_process = FastSAMPrompt(IMAGE_PATH, everything_results, device=DEVICE)
# everything prompt
ann = prompt_process.everything_prompt()
# bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
ann = prompt_process.box_prompt(bboxes=[[200, 200, 300, 300]])
# text prompt
ann = prompt_process.text_prompt(text='a photo of a dog')
# point prompt
# points default [[0,0]] [[x1,y1],[x2,y2]]
# point_label default [0] [1,0] 0:background, 1:foreground
ann = prompt_process.point_prompt(points=[[620, 360]], pointlabel=[1])
prompt_process.plot(annotations=ann,output_path='./output/dog.jpg',)
```
You are also welcomed to try our Colab demo: [FastSAM_example.ipynb](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing).
## Different Inference Options
We provide various options for different purposes, details are in [MORE_USAGES.md](MORE_USAGES.md).
## Training or Validation
Training from scratch or validation: [Training and Validation Code](https://github.com/CASIA-IVA-Lab/FastSAM/releases).
## Web demo
### Gradio demo
- We also provide a UI for testing our method that is built with gradio. You can upload a custom image, select the mode and set the parameters, click the segment button, and get a satisfactory segmentation result. Currently, the UI supports interaction with the 'Everything mode' and 'points mode'. We plan to add support for additional modes in the future. Running the following command in a terminal will launch the demo:
```
# Download the pre-trained model in "./weights/FastSAM.pt"
python app_gradio.py
```
- This demo is also hosted on [HuggingFace Space](https://huggingface.co/spaces/An-619/FastSAM).
![HF_Everyhting](assets/hf_everything_mode.png) ![HF_Points](assets/hf_points_mode.png)
### Replicate demo
- [Replicate demo](https://replicate.com/casia-iva-lab/fastsam) has supported all modes, you can experience points/box/text mode.
![Replicate-1](assets/replicate-1.png) ![Replicate-2](assets/replicate-2.png) ![Replicate-3](assets/replicate-3.png)
## <a name="Models"></a>Model Checkpoints
Two model versions of the model are available with different sizes. Click the links below to download the checkpoint for the corresponding model type.
- **`default` or `FastSAM`: [YOLOv8x based Segment Anything Model](https://drive.google.com/file/d/1m1sjY4ihXBU1fZXdQ-Xdj-mDltW-2Rqv/view?usp=sharing) | [Baidu Cloud (pwd: 0000).](https://pan.baidu.com/s/18KzBmOTENjByoWWR17zdiQ?pwd=0000)**
- `FastSAM-s`: [YOLOv8s based Segment Anything Model.](https://drive.google.com/file/d/10XmSj6mmpmRb8NhXbtiuO9cTTBwR_9SV/view?usp=sharing)
## Results
All result were tested on a single NVIDIA GeForce RTX 3090.
### 1. Inference time
Running Speed under Different Point Prompt Numbers(ms).
| method | params | 1 | 10 | 100 | E(16x16) | E(32x32\*) | E(64x64) |
|:------------------:|:--------:|:-----:|:-----:|:-----:|:----------:|:-----------:|:----------:|
| SAM-H | 0.6G | 446 | 464 | 627 | 852 | 2099 | 6972 |
| SAM-B | 136M | 110 | 125 | 230 | 432 | 1383 | 5417 |
| FastSAM | 68M | 40 |40 | 40 | 40 | 40 | 40 |
### 2. Memory usage
| Dataset | Method | GPU Memory (MB) |
| :-------: | :-----: | :-------------: |
| COCO 2017 | FastSAM | 2608 |
| COCO 2017 | SAM-H | 7060 |
| COCO 2017 | SAM-B | 4670 |
### 3. Zero-shot Transfer Experiments
#### Edge Detection
Test on the BSDB500 dataset.
|method | year| ODS | OIS | AP | R50 |
|:----------:|: