【知识点详解】
1. **三角形的性质与构造** - 问题涉及到三角形的边长关系,例如题目1中寻找符合条件的三角形个数,这需要应用到三角形的构造规则,即任意两边之和大于第三边,两边之差小于第三边。
2. **三角形的内角和与外角和** - 问题4询问多边形的边数,通过内角和与外角和的关系可以得出,多边形的内角和公式为(n-2)×180°,而所有外角和总是360°。因此,如果内角和是外角和的4倍,可以解出多边形的边数。
3. **三角形的角的关系** - 题目3中,根据角度之间的倍数关系求解∠A的角度,需要用到三角形内角和为180°的性质。
4. **等腰三角形的性质** - 题目1和部分填空题涉及到等腰三角形,等腰三角形的两腰相等,底角相等。例如,题目1的解题过程中可能需要考虑等腰三角形的构造。
5. **三角形的高** - 如题目2,要求画出三角形的高,这需要理解三角形高线的概念,即从一个顶点垂直于对边的线段。
6. **角平分线的性质** - 题目7中,BE平分∠ABC,并且CD是AB边上的高,由此可以推断出一些关于三角形BEC的性质,比如三角形BEC的两个角相等。
7. **几何图形的折叠** - 题目中的折纸问题(例如题目7),涉及到图形变换,尤其是对称性。当沿着AM折叠,N落在BC上,表明AM是对称轴,可以利用对称性找出角度关系。
8. **角平分线的递归性质** - 题目8中,一系列角平分线的交点形成新的角度,这是递归几何问题,需要利用角度平分线的性质进行计算。
9. **相似三角形的性质** - 解答题中,如题1和题2,可能需要利用相似三角形的性质,如对应边的比例关系和对应角相等,来证明某些结论。
10. **垂心与中位线的性质** - 题目3和题4中,涉及到了垂心和中位线,垂心是三角形三条高线的交点,中位线等于底边的一半,这些性质有助于求解相关角度和长度。
11. **多边形的对角线** - 题目5要求画出多边形的对角线,并观察规律,多边形的对角线条数可以通过公式(n-3)×n/2计算,同时,对角线将多边形分割成(n-2)个三角形。
12. **非标准几何问题** - 部分题目如题目6、8、9等,需要学生具备解决非典型几何问题的能力,包括识别图形的特殊性质,应用几何定理和公式。
以上知识点是针对人教版八年级上册中考数学复习微专题《三角形的有关计算》中涉及的主要数学概念和技能。学生需要熟练掌握这些知识点,才能有效地完成专题过关练习。通过这些练习,学生可以巩固三角形的基本概念,提高解题能力,为中考做好准备。