function [kernel_c1,kernel_c2,weight_c2,weight_full_1,weight_full_2,weight_arr2num]=CNN_upweight(Error,train_data,state_c1,state_s1,state_c2,state_s2_temp1,state_s2_temp2,state_s2,...
state_f1,state_f2,kernel_c1,kernel_c2,weight_c2,weight_full_1,weight_full_2,weight_arr2num,yita,state_c2_temp1)
%%% 完成参数更新,权值和卷积核
%% 结点数目
layer_f2_num=size(state_f2,2);
layer_f1_num=size(state_f1,2);
layer_c2_num=size(state_c2,3);
layer_c1_num=size(state_c1,3);
[c2_row,c2_col,~]=size(state_c2);
[c1_row,c1_col,~]=size(state_c1);
[s2_row,s2_col,~]=size(state_s2_temp1);
[kernel_row,kernel_col]=size(kernel_c1(:,:,1));
%% 保存网络权值
weight_full_2_temp=weight_full_2;
weight_full_1_temp=weight_full_1;
weight_arr2num_temp=weight_arr2num;
kernel_c2_temp=kernel_c2;
kernel_c1_temp=kernel_c1;
weight_c2_temp=weight_c2;
%% 更新weight_full_2
for n=1:layer_f2_num
delta_weight_full_2_temp(:,n)=2*Error(1,n)*state_f1';
end
size(delta_weight_full_2_temp);
weight_full_2_temp=weight_full_2_temp-yita*delta_weight_full_2_temp;
%% 更新weight_full_1
for n=1:layer_f2_num
for m=1:layer_f1_num
delta_weight_full_1_temp(:,m)=2*Error(1,n)*weight_full_2(m,n)*state_s2';
end
weight_full_1_temp=weight_full_1_temp-yita*delta_weight_full_1_temp;
end
%% 更新weight_arr2num
for m=1:layer_c2_num
for n=1:layer_f2_num
count_delta_weight_arr2num_temp=zeros(s2_row,s2_col);
for k=1:layer_f1_num
delta_weight_arr2num_temp(:,:,m)=2*Error(1,n)*weight_full_1(m,k)*weight_full_2(k,n)*exp(-state_s2_temp2(1,m))/(1+exp(-state_s2_temp2(1,m))).^2*state_s2_temp1(:,:,m);
count_delta_weight_arr2num_temp=count_delta_weight_arr2num_temp+delta_weight_arr2num_temp(:,:,m);
end
weight_arr2num_temp(:,:,m)=weight_arr2num_temp(:,:,m)-yita*count_delta_weight_arr2num_temp;
end
end
%% 更新kernel_c2
for m=1:layer_c2_num
for n=1:layer_f2_num
count_delta_state_s2_temp1=zeros(s2_row,s2_col);
for k=1:layer_f1_num
delta_state_s2_temp1(:,:,m)=2*Error(1,n)*weight_full_1(m,k)*weight_full_2(k,n)*exp(-state_s2_temp2(1,m))/(1+exp(-state_s2_temp2(1,m))).^2*weight_arr2num(:,:,m);
count_delta_state_s2_temp1=count_delta_state_s2_temp1+delta_state_s2_temp1(:,:,m);
end
delta_state_c2=kron(count_delta_state_s2_temp1,ones(2,2)/4);
count=zeros(kernel_row,kernel_col);
for k_row=1:c2_row
for k_col=1:c2_col
count=count+state_c2_temp1(k_row:k_row+kernel_row-1,k_col:k_col+kernel_col-1)*delta_state_c2(k_row,k_col);
end
end
kernel_c2_temp(:,:,m)=kernel_c2_temp(:,:,m)-yita*count;
end
end
%% 更新 weight_c2
for n=1:layer_f2_num
for m=1:layer_c2_num
count_delta_state_s2_temp1=zeros(s2_row,s2_col);
for kk=1:layer_f1_num
delta_state_s2_temp1(:,:,m)=2*Error(1,n)*weight_full_1(m,kk)*weight_full_2(kk,n)*exp(-state_s2_temp2(1,m))/(1+exp(-state_s2_temp2(1,m))).^2*weight_arr2num(:,:,m);
count_delta_state_s2_temp1=count_delta_state_s2_temp1+delta_state_s2_temp1(:,:,m);
end
delta_state_c2=kron(count_delta_state_s2_temp1,ones(2,2)/4);
delta_state_c2_temp1(:,:,m)=conv2(delta_state_c2,kernel_c2(:,:,m),'full');
for k=1:layer_c1_num
delta_weight_c2_temp(k,m)=sum(sum(delta_state_c2_temp1(:,:,m).*state_s1(:,:,k)));
end
end
weight_c2_temp=weight_c2_temp-yita*delta_weight_c2_temp;
end
%% 更新 kernel_c1
for n=1:layer_f2_num
for m=1:layer_c2_num
count_delta_state_s2_temp1=zeros(s2_row,s2_col);
for kk=1:layer_f1_num
delta_state_s2_temp1(:,:,m)=2*Error(1,n)*weight_full_1(m,kk)*weight_full_2(kk,n)*exp(-state_s2_temp2(1,m))/(1+exp(-state_s2_temp2(1,m))).^2*weight_arr2num(:,:,m);
count_delta_state_s2_temp1=count_delta_state_s2_temp1+delta_state_s2_temp1(:,:,m);
end
delta_state_c2=kron(count_delta_state_s2_temp1,ones(2,2)/4);
delta_state_c2_temp1(:,:,m)=conv2(delta_state_c2,kernel_c2(:,:,m),'full');
end
for k=1:layer_c1_num
[x,y,~]=size(state_c2_temp1);
count1=zeros(x,y);
for m=1:layer_c2_num
count_temp=weight_c2(k,m)*delta_state_c2_temp1(:,:,m);
count1=count1+count_temp;
end
delta_state_s1(:,:,k)=count1;
delta_state_c1(:,:,k)=kron(delta_state_s1(:,:,k),ones(2,2)/4);
%
count2=zeros(kernel_row,kernel_col);
for k_row=1:c1_row
for k_col=1:c1_col
count=count+train_data(k_row:k_row+kernel_row-1,k_col:k_col+kernel_col-1)*delta_state_c1(k_row,k_col,k);
end
end
kernel_c1_temp(:,:,k)=kernel_c1_temp(:,:,k)-yita*count;
end
end
%% 权值更新
weight_c2=weight_c2_temp;
kernel_c1=kernel_c1_temp;
kernel_c2=kernel_c2_temp;
weight_arr2num=weight_arr2num_temp;
weight_full_2=weight_full_2_temp;
weight_full_1=weight_full_1_temp;
end
依邻依伴
- 粉丝: 3073
- 资源: 249
最新资源
- 【创新无忧】基于豪猪优化算法CPO优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于黑翅鸢算法BKA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于黑翅鸢算法BKA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于黑猩猩优化算法Chimp优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于黑猩猩优化算法Chimp优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于黑翅鸢算法BKA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于黑猩猩优化算法Chimp优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于黑猩猩优化算法Chimp优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于黑猩猩优化算法Chimp优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于花朵授粉优化算法FPA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于黑猩猩优化算法Chimp优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于黑猩猩优化算法Chimp优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于花朵授粉优化算法FPA优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于花朵授粉优化算法FPA优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于花朵授粉优化算法FPA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于花朵授粉优化算法FPA优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈