/**
******************************************************************************
* @file stm8l15x_tim1.c
* @author MCD Application Team
* @version V1.4.0
* @date 09/24/2010
* @brief This file provides all the TIM1 firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>© COPYRIGHT 2010 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "stm8l15x_tim1.h"
/** @addtogroup STM8L15x_StdPeriph_Driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void TI1_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
static void TI2_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
static void TI3_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
static void TI4_Config(uint8_t TIM1_ICPolarity, uint8_t TIM1_ICSelection,
uint8_t TIM1_ICFilter);
/**
* @addtogroup TIM1_Public_Functions
* @{
*/
/**
* @brief Deinitializes the TIM1 peripheral registers to their default reset values.
* @param None
* @retval None
*/
void TIM1_DeInit(void)
{
TIM1->CR1 = TIM1_CR1_RESET_VALUE;
TIM1->CR2 = TIM1_CR2_RESET_VALUE;
TIM1->SMCR = TIM1_SMCR_RESET_VALUE;
TIM1->ETR = TIM1_ETR_RESET_VALUE;
TIM1->IER = TIM1_IER_RESET_VALUE;
/* Disable channels */
TIM1->CCER1 = TIM1_CCER1_RESET_VALUE;
TIM1->CCER2 = TIM1_CCER2_RESET_VALUE;
/* Configure channels as inputs: it is necessary if lock level is equal to 2 or 3 */
TIM1->CCMR1 = 0x01;
TIM1->CCMR2 = 0x01;
TIM1->CCMR3 = 0x01;
TIM1->CCMR4 = 0x01;
/* Then reset channel registers: it also works if lock level is equal to 2 or 3 */
TIM1->CCER1 = TIM1_CCER1_RESET_VALUE;
TIM1->CCER2 = TIM1_CCER2_RESET_VALUE;
TIM1->CCMR1 = TIM1_CCMR1_RESET_VALUE;
TIM1->CCMR2 = TIM1_CCMR2_RESET_VALUE;
TIM1->CCMR3 = TIM1_CCMR3_RESET_VALUE;
TIM1->CCMR4 = TIM1_CCMR4_RESET_VALUE;
TIM1->CNTRH = TIM1_CNTRH_RESET_VALUE;
TIM1->CNTRL = TIM1_CNTRL_RESET_VALUE;
TIM1->PSCRH = TIM1_PSCRH_RESET_VALUE;
TIM1->PSCRL = TIM1_PSCRL_RESET_VALUE;
TIM1->ARRH = TIM1_ARRH_RESET_VALUE;
TIM1->ARRL = TIM1_ARRL_RESET_VALUE;
TIM1->CCR1H = TIM1_CCR1H_RESET_VALUE;
TIM1->CCR1L = TIM1_CCR1L_RESET_VALUE;
TIM1->CCR2H = TIM1_CCR2H_RESET_VALUE;
TIM1->CCR2L = TIM1_CCR2L_RESET_VALUE;
TIM1->CCR3H = TIM1_CCR3H_RESET_VALUE;
TIM1->CCR3L = TIM1_CCR3L_RESET_VALUE;
TIM1->CCR4H = TIM1_CCR4H_RESET_VALUE;
TIM1->CCR4L = TIM1_CCR4L_RESET_VALUE;
TIM1->OISR = TIM1_OISR_RESET_VALUE;
TIM1->EGR = 0x01; /* TIM1_EGR_UG */
TIM1->DTR = TIM1_DTR_RESET_VALUE;
TIM1->BKR = TIM1_BKR_RESET_VALUE;
TIM1->RCR = TIM1_RCR_RESET_VALUE;
TIM1->SR1 = TIM1_SR1_RESET_VALUE;
TIM1->SR2 = TIM1_SR2_RESET_VALUE;
}
/**
* @brief Initializes the TIM1 Time Base Unit according to the specified parameters.
* @param TIM1_Prescaler specifies the Prescaler value.
* @param TIM1_CounterMode specifies the counter mode from
* @ref TIM1_CounterMode_TypeDef .
* @param TIM1_Period specifies the Period value.
* @param TIM1_RepetitionCounter specifies the Repetition counter value
* @retval None
*/
void TIM1_TimeBaseInit(uint16_t TIM1_Prescaler,
TIM1_CounterMode_TypeDef TIM1_CounterMode,
uint16_t TIM1_Period,
uint8_t TIM1_RepetitionCounter)
{
/* Check parameters */
assert_param(IS_TIM1_COUNTER_MODE(TIM1_CounterMode));
/* Set the Autoreload value */
TIM1->ARRH = (uint8_t)(TIM1_Period >> 8);
TIM1->ARRL = (uint8_t)(TIM1_Period);
/* Set the Prescaler value */
TIM1->PSCRH = (uint8_t)(TIM1_Prescaler >> 8);
TIM1->PSCRL = (uint8_t)(TIM1_Prescaler);
/* Select the Counter Mode */
TIM1->CR1 = (uint8_t)((uint8_t)(TIM1->CR1 & (uint8_t)(~(TIM1_CR1_CMS | TIM1_CR1_DIR)))
| (uint8_t)(TIM1_CounterMode));
/* Set the Repetition Counter value */
TIM1->RCR = TIM1_RepetitionCounter;
}
/**
* @brief Initializes the TIM1 Channel1 according to the specified parameters.
* @param TIM1_OCMode specifies the Output Compare mode from
* @ref TIM1_OCMode_TypeDef.
* @param TIM1_OutputState specifies the Output State from
* @ref TIM1_OutputState_TypeDef.
* @param TIM1_OutputNState specifies the Complementary Output State from
* @ref TIM1_OutputNState_TypeDef.
* @param TIM1_Pulse specifies the Pulse width value.
* @param TIM1_OCPolarity specifies the Output Compare Polarity from
* @ref TIM1_OCPolarity_TypeDef.
* @param TIM1_OCNPolarity specifies the Complementary Output Compare
* Polarity from @ref TIM1_OCNPolarity_TypeDef.
* @param TIM1_OCIdleState specifies the Output Compare Idle State from
* @ref TIM1_OCIdleState_TypeDef.
* @param TIM1_OCNIdleState specifies the Complementary Output Compare
* Idle State from @ref TIM1_OCIdleState_TypeDef.
* @retval None
*/
void TIM1_OC1Init(TIM1_OCMode_TypeDef TIM1_OCMode,
TIM1_OutputState_TypeDef TIM1_OutputState,
TIM1_OutputNState_TypeDef TIM1_OutputNState,
uint16_t TIM1_Pulse,
TIM1_OCPolarity_TypeDef TIM1_OCPolarity,
TIM1_OCNPolarity_TypeDef TIM1_OCNPolarity,
TIM1_OCIdleState_TypeDef TIM1_OCIdleState,
TIM1_OCNIdleState_TypeDef TIM1_OCNIdleState)
{
/* Check the parameters */
assert_param(IS_TIM1_OC_MODE(TIM1_OCMode));
assert_param(IS_TIM1_OUTPUT_STATE(TIM1_OutputState));
assert_param(IS_TIM1_OUTPUTN_STATE(TIM1_OutputNState));
assert_param(IS_TIM1_OC_POLARITY(TIM1_OCPolarity));
assert_param(IS_TIM1_OCN_POLARITY(TIM1_OCNPolarity));
assert_param(IS_TIM1_OCIDLE_STATE(TIM1_OCIdleState));
assert_param(IS_TIM1_OCNIDLE_STATE(TIM1_OCNIdleState));
/* Disable the Channel 1: Reset the CCE Bit, Set the Output State ,
the Output N State, the Output Polarity & the Output N Polarity*/
TIM1->CCER1 &= (uint8_t)(~(TIM1_CCER1_CC1E | TIM1_CCER1_CC1NE
| TIM1_CCER1_CC1P | TIM1_CCER1_CC1NP));
/* Set the Output State & Set the Output N State & Set the Output Polarity
& Set the Output N Polarity */
TIM1->CCER1 |= (uint8_t)((uint8_t)((uint8_t)(TIM1_OutputState & TIM1_CCER1_CC1E)
| (uint8_t)(TIM1_OutputNState & TIM1_CCER1_CC1NE))
| (uint8_t)( (uint8_t)(TIM1_OCPolarity & TIM1_CCER1_CC1P)
| (uint8_t)(TIM1_OCNPolarity & TIM1_CCER1_CC1NP)));
/* Reset the Output Compare Bits & Set the Ouput Compare Mode */
TIM1->CCMR1 = (uint8_t)((uint8_t)(TIM1->CCMR1 & (uint8_t)(~TIM1_CCMR_OCM))
| (uint8_t)TIM1_OCMode);
/* Reset the Output Idle state & the Outp
- 1
- 2
前往页