没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
Learning PySpark
Table of Contents
Learning PySpark
Credits
Foreword
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Understanding Spark
What is Apache Spark?
Spark Jobs and APIs
Execution process
Resilient Distributed Dataset
DataFrames
Datasets
Catalyst Optimizer
Project Tungsten
Spark 2.0 architecture
Unifying Datasets and DataFrames
Introducing SparkSession
Tungsten phase 2
Structured Streaming
Continuous applications
Summary
2. Resilient Distributed Datasets
Internal workings of an RDD
Creating RDDs
Schema
Reading from files
Lambda expressions
Global versus local scope
Transformations
The .map(...) transformation
The .filter(...) transformation
The .flatMap(...) transformation
The .distinct(...) transformation
The .sample(...) transformation
The .leftOuterJoin(...) transformation
The .repartition(...) transformation
Actions
The .take(...) method
The .collect(...) method
The .reduce(...) method
The .count(...) method
The .saveAsTextFile(...) method
The .foreach(...) method
Summary
3. DataFrames
Python to RDD communications
Catalyst Optimizer refresh
Speeding up PySpark with DataFrames
Creating DataFrames
Generating our own JSON data
Creating a DataFrame
Creating a temporary table
Simple DataFrame queries
DataFrame API query
SQL query
Interoperating with RDDs
Inferring the schema using reflection
Programmatically specifying the schema
Querying with the DataFrame API
Number of rows
Running filter statements
Querying with SQL
Number of rows
Running filter statements using the where Clauses
DataFrame scenario – on-time flight performance
Preparing the source datasets
Joining flight performance and airports
Visualizing our flight-performance data
Spark Dataset API
Summary
4. Prepare Data for Modeling
Checking for duplicates, missing observations, and outliers
Duplicates
Missing observations
Outliers
Getting familiar with your data
Descriptive statistics
Correlations
Visualization
Histograms
Interactions between features
Summary
5. Introducing MLlib
Overview of the package
Loading and transforming the data
Getting to know your data
Descriptive statistics
Correlations
Statistical testing
Creating the final dataset
剩余379页未读,继续阅读
资源评论
jantacy
- 粉丝: 0
- 资源: 14
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 橙色宽屏风格的蔬菜品种企业网站模板.zip
- 橙色宽屏风格的施工建筑模板下载.zip
- 橙色宽屏风格的室内装饰设计企业网站源码下载.zip
- 橙色宽屏风格的瞬间设计团队源码下载.zip
- 橙色宽屏风格的太空火箭漫画网站模板下载.zip
- 橙色宽屏风格的外卖美食网站模板下载.zip
- 橙色宽屏风格的外贸商务团队企业网站模板.zip
- 橙色宽屏风格的医疗健康服务公司模板下载.zip
- 橙色宽屏风格的网页设计HTML5网站模板.zip
- 橙色宽屏风格的医学康复治疗中心源码下载.zip
- 橙色宽屏风格的云托管网站HTML5模板.zip
- 橙色宽屏风格的移动板房企业网站模板.zip
- 橙色宽屏风格的治疗药物检测模板下载.zip
- 橙色宽屏风格的运动跑鞋商城网站模板下载.zip
- 橙色宽屏风格的装修公司模板下载.zip
- 橙色麦田响应式的企业网站模版下载.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功