馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3>1. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 2: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data .. --upload_data </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
</details>
<h3> Reports </h3>
W&B Repor
没有合适的资源?快使用搜索试试~ 我知道了~
基于 yolov5 的 crop 程序测试脚本,以及 Ultra-Attention
共134个文件
py:40个
pyc:27个
yaml:20个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 94 浏览量
2024-05-22
21:03:39
上传
评论
收藏 83.83MB ZIP 举报
温馨提示
基于 yolov5 的作物程序测试脚本,以及 Ultra-Attention #Ultra-Attention:基于视觉注意感知结构的肝脏超声标准切片自动识别 “UltraAttention/test_instance”中的文件夹是肝脏超声13个标准切片的样本,“权重”文件可以通过 train.py 训练获得。 基于 #YOLOv5(6.1)的弱监督下肝脏超声图像脱敏框架. YOLOv5(6.1)semi_supervised_automatic_cutting 文件夹是一个用于自动裁剪的框架,用于使数据脱敏。
资源推荐
资源详情
资源评论
收起资源包目录
基于 yolov5 的 crop 程序测试脚本,以及 Ultra-Attention (134个子文件)
Dockerfile 821B
.gitignore 176B
.gitignore 176B
Ultra-Attention.iml 481B
auto_crop.iml 324B
LSFLS.jpg 138KB
HOTSP.jpg 135KB
LOTGK.jpg 124KB
HTSPH.JPG 120KB
LAALS.jpg 115KB
SVCLS.jpg 108KB
MTFPH.jpg 100KB
LGLS.jpg 91KB
LTSH.jpg 65KB
MOTFP.jpg 58KB
LKLS.jpg 53KB
67OLS.jpg 48KB
test3.jpg 42KB
test3.jpg 41KB
test1.jpg 38KB
test1.jpg 37KB
test2.jpg 35KB
test2.jpg 20KB
LAFH.jpg 19KB
Liver_13.json 238B
README.md 10KB
README.md 2KB
README.md 700B
.name 16B
cut_img.pt 88.54MB
datasets.py 44KB
datasets_not_print.py 44KB
general.py 34KB
train_server.py 32KB
common.py 27KB
wandb_utils.py 25KB
tf.py 20KB
plots.py 20KB
yolo.py 15KB
metrics.py 13KB
Cut_liver_img.py 13KB
torch_utils.py 13KB
UltraAttention.py 12KB
utils.py 12KB
augmentations.py 11KB
loss.py 9KB
autoanchor.py 7KB
__init__.py 7KB
tarin.py 6KB
ji.py 6KB
downloads.py 6KB
experimental.py 4KB
activations.py 4KB
x.py 3KB
callbacks.py 2KB
autobatch.py 2KB
predict.py 2KB
resume.py 1KB
sweep.py 1KB
restapi.py 1KB
log_dataset.py 1KB
my_dataset.py 988B
flops.py 594B
server_main.py 468B
__init__.py 458B
example_request.py 299B
__init__.py 175B
__init__.py 0B
__init__.py 0B
__init__.py 0B
datasets.cpython-36.pyc 35KB
datasets.cpython-37.pyc 35KB
general.cpython-36.pyc 30KB
general.cpython-37.pyc 30KB
common.cpython-36.pyc 27KB
common.cpython-37.pyc 26KB
plots.cpython-36.pyc 18KB
plots.cpython-37.pyc 18KB
yolo.cpython-36.pyc 13KB
yolo.cpython-37.pyc 13KB
torch_utils.cpython-36.pyc 12KB
torch_utils.cpython-37.pyc 12KB
metrics.cpython-36.pyc 11KB
metrics.cpython-37.pyc 11KB
UltraAttention.cpython-37.pyc 10KB
augmentations.cpython-36.pyc 9KB
augmentations.cpython-37.pyc 9KB
autoanchor.cpython-36.pyc 6KB
autoanchor.cpython-37.pyc 6KB
experimental.cpython-36.pyc 5KB
experimental.cpython-37.pyc 5KB
downloads.cpython-36.pyc 4KB
downloads.cpython-37.pyc 4KB
__init__.cpython-36.pyc 534B
__init__.cpython-37.pyc 528B
__init__.cpython-36.pyc 124B
__init__.cpython-37.pyc 118B
userdata.sh 1KB
mime.sh 780B
Arial.ttf 755KB
共 134 条
- 1
- 2
资源评论
hakesashou
- 粉丝: 6769
- 资源: 1679
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功