<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="1000"></a>
 
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<img src="https://user-images.githubusercontent.com/26833433/85340570-30360a80-b49b-11ea-87cf-bdf33d53ae15.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: increased layers, reduced parameters, faster inference and improved mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy. Credit to @WongKinYiu for excellent CSP work.
- **May 27, 2020**: Public release of repo. YOLOv5 models are SOTA among all known YOLO implementations, YOLOv5 family will be undergoing architecture research and development over Q2/Q3 2020 to increase performance. Updates may include [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) bottlenecks, [YOLOv4](https://github.com/AlexeyAB/darknet) features, as well as PANet or BiFPN heads.
- **April 1, 2020**: Begin development of a 100% PyTorch, scaleable YOLOv3/4-based group of future models, in a range of compound-scaled sizes. Models will be defined by new user-friendly `*.yaml` files. New training methods will be simpler to start, faster to finish, and more robust to training a wider variety of custom dataset.
## Pretrained Checkpoints
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv5s](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 36.6 | 36.6 | 55.8 | **2.1ms** | **476** || 7.5M | 13.2B
| [YOLOv5m](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 43.4 | 43.4 | 62.4 | 3.0ms | 333 || 21.8M | 39.4B
| [YOLOv5l](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 46.6 | 46.7 | 65.4 | 3.9ms | 256 || 47.8M | 88.1B
| [YOLOv5x](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | **48.4** | **48.4** | **66.9** | 6.1ms | 164 || 89.0M | 166.4B
| [YOLOv3-SPP](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --img 736 --conf 0.001`
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
## Requirements
Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
```bash
$ pip install -U -r requirements.txt
```
## Tutorials
* [Notebook](https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb) <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [Google Cloud Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
## Inference
Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
```bash
$ python detect.py --source file.jpg # image
file.mp4 # video
./dir # directory
0 # webcam
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on examples in the `./inference/images` folder:
```bash
$ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)
image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
Results saved to /content/yolov5/inference/output
```
<img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
## Reproduce Our Training
Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 48
yolov5l 32
yolov5x 16
```
<img src="https://user-images.githubusercontent.com/26833433/84186698-c4d54d00-aa45-11ea-9bde-c632c1230ccd.png" width="900">
## Reproduce Our Environment
To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:
- **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Google Colab Notebook** with 12 hours of free GPU time. <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.i
没有合适的资源?快使用搜索试试~ 我知道了~
基于yolov5的驾驶员不规范行为检测
共49个文件
py:20个
yaml:8个
jpg:5个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 177 浏览量
2024-01-30
18:00:11
上传
评论
收藏 120.03MB ZIP 举报
温馨提示
使用说明在zip压缩包 README 文件中,请仔细阅读。 要求 安装了所有依赖项的 Python 3.7 或更高版本,包括 .要安装,请运行:requirements.txttorch >= 1.5 $ pip install -U -r requirements.txt
资源推荐
资源详情
资源评论
收起资源包目录
action-detection-master.zip (49个子文件)
action-detection-master
results.txt 25KB
weights
best.pt 55.7MB
last.pt 55.7MB
yolov5s.pt 14.46MB
download_weights.sh 244B
data
coco128.yaml 1KB
drive.yaml 139B
coco.yaml 2KB
get_coco2017.sh 975B
LICENSE 34KB
test_batch0_pred.jpg 93KB
hubconf.py 3KB
utils
utils.py 49KB
__init__.py 0B
google_utils.py 4KB
video2rgb.py 1KB
activations.py 2KB
datasets.py 34KB
torch_utils.py 8KB
train_batch0.jpg 131KB
train_batch1.jpg 110KB
Dockerfile 2KB
results.png 145KB
train_batch2.jpg 113KB
my_utils
imgaug_utils.py 4KB
data_aug.py 5KB
my_utils.rar 5KB
parse_xml.py 3KB
remove_noexist.py 1KB
labels.png 385KB
requirements.txt 963B
models
__init__.py 0B
yolov5m.yaml 2KB
yolov5s.yaml 2KB
yolov5l.yaml 2KB
common.py 3KB
yolov3-spp.yaml 2KB
onnx_export.py 2KB
experimental.py 3KB
yolov5x.yaml 2KB
yolo.py 10KB
detect.py 7KB
.gitignore 2KB
train.py 21KB
test.py 13KB
test_batch0_gt.jpg 96KB
.dockerignore 3KB
README.md 9KB
tutorial.ipynb 3.11MB
共 49 条
- 1
资源评论
hakesashou
- 粉丝: 6607
- 资源: 1665
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- MongoDB数据库:MongoDB基本CRUD操作PDF
- Springboot 电子货币在线交易平台程序源码70351
- 消息认证码HMAC算法的MbedTLS代码实现Demo
- springboot热贡文化旅游APP 程序源码69932
- springboot投票管理系统33128(数据库+源码)
- 圣诞树代码编程python-1.快乐数-呵呵哈哈哈.py
- 圣诞树代码编程python-31.自定义异常-我的错误我做主.rar
- 圣诞树代码编程python-30.读取文件内容-你的文件里都有啥嘞.rar
- django高校宿舍管理系统程序源码69305
- 得利捷读码器 DL.CODE 1.8.2-Setup.exe
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功