httpswww.kaggle.comcompetitionstensorflow-great-barrier-reefdata
在这场比赛中,您将通过在大屏障礁周围的不同时间和位置拍摄的一系列水下图像来预测thorns海星的存在和位置。预测以一个边界盒的形式以及每个已确定的海星的置信度得分。图像可能包含零或更多海星。
该竞赛使用一个隐藏的测试集,该测试集将由API提供,以确保您以每个视频中记录的顺序评估图像。评分您提交的笔记本时,将在笔记本电脑上可用的实际测试数据(包括示例提交)。
In this competition, you will predict the presence and position of crown-of-thorns starfish in sequences of underwater images taken at various times and locations around the Great Barrier Reef. Predictions take the form of a bounding box together with a confidence score for each identified starfish. An image may contain zero or more starfish.
This competition uses a hidden test set that will be served by an API to ensure you evaluate the images in the same order they were recorded within each video. When your submitted notebook is scored, the actual test data (including a sample submission) will be availabe to your notebook.
Files
train/ - Folder containing training set photos of the form video_{video_id}/{video_frame_number}.jpg.
[train/test].csv - Metadata for the images. As with other test files, most of the test metadata data is only available to your notebook upon submission. Just the first few rows available for download.
video_id - ID number of the video the image was part of. The video ids are not meaningfully ordered.
video_frame - The frame number of the image within the video. Expect to see occasional gaps in the frame number from when the diver surfaced.
sequence - ID of a gap-free subset of a given video. The sequence ids are not meaningfully ordered.
sequence_frame - The frame number within a given sequence.
image_id - ID code for the image, in the format '{video_id}-{video_frame}'
annotations - The bounding boxes of any starfish detections in a string format that can be evaluated directly with Python. Does not use the same format as the predictions you will submit. Not available in test.csv. A bounding box is described by the pixel coordinate (x_min, y_min) of its upper left corner within the image together with its width and height in pixels.
example_sample_submission.csv - A sample submission file in the correct format. The actual sample submission will be provided by the API; this is only provided to illustrate how to properly format predictions. The submission format is further described on the Evaluation page.
example_test.npy - Sample data that will be served by the example API.
greatbarrierreef - The image delivery API that will serve the test set pixel arrays. You may need Python 3.7 and a Linux environment to run the example offline without errors.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
深度学习领域gan算法在深海海星目标检测(带数据集)--3、gan-training-make-unlimited-cots 数据集太大,可联系我下载。 语言:python 内容包括:源码、数据集、数据集描述 目的:使用gan算法在产品缺陷中目标检测。 带数据集很好运行,主页有搭建环境过程。主页有更多源码。 数据集描述如下: 在这场比赛中,您将通过在大屏障礁周围的不同时间和位置拍摄的一系列水下图像来预测thorns海星的存在和位置。预测以一个边界盒的形式以及每个已确定的海星的置信度得分。图像可能包含零或更多海星。 该竞赛使用一个隐藏的测试集,该测试集将由API提供,以确保您以每个视频中记录的顺序评估图像。评分您提交的笔记本时,将在笔记本电脑上可用的实际测试数据(包括示例提交)。
资源推荐
资源详情
资源评论
收起资源包目录
3.zip (2个子文件)
数据集.txt 3KB
3、gan-training-make-unlimited-cots.ipynb 10.4MB
共 2 条
- 1
资源评论
- Iam_Rocky2024-02-03这个资源对我启发很大,受益匪浅,学到了很多,谢谢分享~
大大U
- 粉丝: 754
- 资源: 136
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功