<a align="left" href="https://apps.apple.com/app/id1452689527" target="_blank">
<img width="800" src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg"></a>
 
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313216-f0a5e100-9af5-11eb-8445-c682b60da2e3.png"></p>
<details>
<summary>YOLOv5-P5 640 Figure (click to expand)</summary>
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/114313219-f1d70e00-9af5-11eb-9973-52b1f98d321a.png"></p>
</details>
<details>
<summary>Figure Notes (click to expand)</summary>
* GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
* EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by `python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>
- **April 11, 2021**: [v5.0 release](https://github.com/ultralytics/yolov5/releases/tag/v5.0): YOLOv5-P6 1280 models, [AWS](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart), [Supervise.ly](https://github.com/ultralytics/yolov5/issues/2518) and [YouTube](https://github.com/ultralytics/yolov5/pull/2752) integrations.
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
## Pretrained Checkpoints
[assets]: https://github.com/ultralytics/yolov5/releases
Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>test<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>V100 (ms) | |params<br><sup>(M) |FLOPS<br><sup>640 (B)
--- |--- |--- |--- |--- |--- |---|--- |---
[YOLOv5s][assets] |640 |36.7 |36.7 |55.4 |**2.0** | |7.3 |17.0
[YOLOv5m][assets] |640 |44.5 |44.5 |63.1 |2.7 | |21.4 |51.3
[YOLOv5l][assets] |640 |48.2 |48.2 |66.9 |3.8 | |47.0 |115.4
[YOLOv5x][assets] |640 |**50.4** |**50.4** |**68.8** |6.1 | |87.7 |218.8
| | | | | | || |
[YOLOv5s6][assets] |1280 |43.3 |43.3 |61.9 |**4.3** | |12.7 |17.4
[YOLOv5m6][assets] |1280 |50.5 |50.5 |68.7 |8.4 | |35.9 |52.4
[YOLOv5l6][assets] |1280 |53.4 |53.4 |71.1 |12.3 | |77.2 |117.7
[YOLOv5x6][assets] |1280 |**54.4** |**54.4** |**72.0** |22.4 | |141.8 |222.9
| | | | | | || |
[YOLOv5x6][assets] TTA |1280 |**55.0** |**55.0** |**72.0** |70.8 | |- |-
<details>
<summary>Table Notes (click to expand)</summary>
* AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
* AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
* Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
* All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
* Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python test.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸ RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
## Inference
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube video
'rtsp://example.com/media.mp4' #
没有合适的资源?快使用搜索试试~ 我知道了~
yolov5模型 yolov5模型 yolov5模型
共132个文件
yaml:30个
py:27个
pyc:16个
需积分: 0 13 下载量 44 浏览量
更新于2024-03-22
1
收藏 644.81MB ZIP 举报
yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型yolov5模型 yolov5模型 yolov5模型
收起资源包目录
yolov5模型 yolov5模型 yolov5模型 (132个子文件)
config 268B
description 73B
develop 179B
develop 41B
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
exclude 240B
.gitattributes 75B
.gitignore 4KB
HEAD 179B
HEAD 179B
HEAD 33B
HEAD 24B
pack-34667eae232258625a4dbb38c9c1698c6b48581b.idx 178KB
index 8KB
tutorial.ipynb 384KB
bus.jpg 476KB
zidane.jpg 165KB
LICENSE 34KB
README.md 11KB
README.md 2KB
bug-report.md 2KB
feature-request.md 737B
question.md 140B
pack-34667eae232258625a4dbb38c9c1698c6b48581b.pack 8.63MB
packed-refs 3KB
yolov5x.pt 366.5MB
yolov5l.pt 192.17MB
yolov5m.pt 84.45MB
yolov5s.pt 27.18MB
best.pt 13.82MB
datasets.py 44KB
train.py 33KB
general.py 28KB
plots.py 18KB
test.py 17KB
wandb_utils.py 16KB
common.py 16KB
yolo.py 13KB
torch_utils.py 12KB
loss.py 9KB
detect.py 9KB
metrics.py 9KB
autoanchor.py 7KB
export.py 7KB
hubconf.py 6KB
experimental.py 5KB
google_utils.py 5KB
activations.py 4KB
resume.py 1KB
restapi.py 1KB
log_dataset.py 800B
example_request.py 299B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
datasets.cpython-37.pyc 34KB
general.cpython-37.pyc 23KB
common.cpython-37.pyc 19KB
plots.cpython-37.pyc 16KB
wandb_utils.cpython-37.pyc 12KB
torch_utils.cpython-37.pyc 11KB
test.cpython-37.pyc 11KB
yolo.cpython-37.pyc 11KB
metrics.cpython-37.pyc 7KB
loss.cpython-37.pyc 6KB
autoanchor.cpython-37.pyc 6KB
experimental.cpython-37.pyc 6KB
google_utils.cpython-37.pyc 3KB
__init__.cpython-37.pyc 141B
__init__.cpython-37.pyc 128B
__init__.cpython-37.pyc 127B
pre-rebase.sample 5KB
update.sample 4KB
fsmonitor-watchman.sample 3KB
pre-commit.sample 2KB
prepare-commit-msg.sample 1KB
pre-push.sample 1KB
commit-msg.sample 896B
pre-receive.sample 544B
applypatch-msg.sample 478B
pre-applypatch.sample 424B
post-update.sample 189B
get_voc.sh 4KB
get_argoverse_hd.sh 2KB
userdata.sh 1KB
get_coco.sh 962B
mime.sh 780B
get_coco128.sh 618B
download_weights.sh 277B
requirements.txt 677B
additional_requirements.txt 105B
objects365.yaml 7KB
anchors.yaml 3KB
VisDrone.yaml 3KB
SKU-110K.yaml 2KB
yolov5-p7.yaml 2KB
共 132 条
- 1
- 2
资源推荐
资源预览
资源评论
114 浏览量
2020-07-30 上传
2022-12-31 上传
5星 · 资源好评率100%
5星 · 资源好评率100%
135 浏览量
155 浏览量
5星 · 资源好评率100%
110 浏览量
161 浏览量
5星 · 资源好评率100%
152 浏览量
124 浏览量
153 浏览量
5星 · 资源好评率100%
182 浏览量
122 浏览量
2024-02-09 上传
145 浏览量
5星 · 资源好评率100%
5星 · 资源好评率100%
2022-07-01 上传
2024-10-04 上传
167 浏览量
2024-08-06 上传
资源评论
fyl2fly
- 粉丝: 0
- 资源: 4
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功