# BayesSpam
python实现基于贝叶斯的简单垃圾邮件分类
在400封邮件(正常邮件与垃圾邮件各一半)的测试集中测试结果为分类准确率95.15%,在仅仅统计词频计算概率的情况下,分类结果还是相当不错的。
**1、准备工作**
python3.4开发环境;
结巴分词工具:https://github.com/fxsjy/jieba
**2、贝叶斯公式**
我们要做的是计算在已知词向量$w=(w_1,w_2,...,w_n)$的条件下求包含该词向量邮件是否为垃圾邮件的概率,即求:
<center>$P(s|w),w=(w_1,w_2,...,w_n)$</center>
其中,$s$表示分类为垃圾邮件
根据贝叶斯公式和全概率公式,
$P(s|w_1,w_2,...,w_n)$
$=\frac {P(s,w_1,w_2,...,w_n)}{P(w_1,w_2,...,w_n)}$
$=\frac {P(w_1,w_2,...,w_n|s)P(s)}{P(w_1,w_2,...,w_n)}$
$=\frac {P(w_1,w_2,...,w_n|s)P(s)}{P(w_1,w_2,...,w_n|s)\cdot p(s)+P(w_1,w_2,...,w_n|s^{'})\cdot p(s^{'})}\qquad\qquad...式1$
根据朴素贝叶斯的条件独立假设,并设先验概率$P(s)=P(s^{'})=0.5$,上式可化为:
$=\frac {\prod\limits_{j=1}^nP(w_j|s)}{\prod\limits_{j=1}^nP(w_j|s)+\prod\limits_{j=1}^nP(w_j|s^{'})}$
再利用贝叶斯$P(w_j|s)=\frac{P(s|w_j)\cdot P(w_j)}{P(s)}$,式子化为
$=\frac {\prod\limits_{j=1}^nP(s|w_j)}{\prod\limits_{j=1}^nP(s|w_j)+\prod\limits_{j=1}^nP(s^{'}|w_j)}$
$=\frac {\prod\limits_{j=1}^nP(s|w_j)}{\prod\limits_{j=1}^nP(s|w_j)+\prod\limits_{j=1}^n\left(1-P(s|w_j)\right)}\qquad\qquad...式2$
至此,我们接下来会用式2来计算概率$P(s|w)$,为什么不用式1而用式2来计算概率,是因为通过式2可以将关于$s^{'}$的部分用$s$表示,方便计算。
**3、实现步骤**
具体实现的源码已经给出,这里简单说下思路,就是一个分词并记录词频的过程:
(1)对训练集用结巴分词,并用停用表进行简单过滤,然后使用正则表达式过滤掉邮件中的非中文字符;
(2)分别保存正常邮件与垃圾邮件中出现的词有多少邮件出现该词,得到两个词典。例如词"疯狂"在8000封正常邮件中出现了20次,在8000封垃圾邮件中出现了200次;
(3)对测试集中的每一封邮件做同样的处理,并计算得到$P(s|w)$最高的15个词,在计算过程中,若该词只出现在垃圾邮件的词典中,则令$P(w|s^{'})=0.01$,反之亦然;若都未出现,则令$P(s|w)=0.4$。PS.这里做的几个假设基于前人做的一些研究工作得出的。
(4)对得到的每封邮件中重要的15个词利用式2计算概率,若概率$>$阈值$\alpha(一般设为0.9)$,则判为垃圾邮件,否则判为正常邮件。

梦回阑珊
- 粉丝: 5820
- 资源: 1781
最新资源
- 毕业设计JAVAWEB校园订餐系统项目源码
- html css js分页按钮
- Comsol多孔板相场断裂模型:一种高效的数值模拟工具,好的,以下是根据您提供的“comsol多孔板相场断裂模型”提炼出的一个标题: COMSOL多孔板相场模拟与断裂分析模型 此标题涵盖了您提供
- Vcredist运行库【2005、2008、2010、2012、2013、2015-2022】X86+X64集合打包
- 六轴EtherCAT总线伺服涂布收卷机程序:动态测量与同步控制,具备参考值的六个伺服+变频器+编码器方案,六轴EtherCAT总线伺服涂布收卷机高级编程:伺服、变频器与编码器的协同控制及动态测量频率转
- springboot接入InfoSuiteAs
- 命令行界面构建库 :CmdForge
- 电力系统风储协同调频策略的MATLAB仿真模型:基于四机两区系统的频域模型与控制策略优化分析,MATLAB仿真模型:风储联合一次调频在四机两区电力系统的应用与优化,电力系统风储联合一次调频MATLAB
- 【微信小程序源码】笑话
- 「三菱R系列PLC应用:ST、RD77MS定位与触摸屏配方功能实现异地操作及快速通信」,三菱R系列PLC案例详解:高级应用与CClink通信实现机器人远程操作及触摸屏配方功能,三菱R系列PLC案例程序
- 【微信小程序源码】滑动选项卡
- Video_59564296397953.mp3
- 使用c++开发相机的示例CameraDS,引用DirectShow技术
- 贪吃蛇 web版 支持python启动
- 基于NRBO优化算法的Transformer-BiLSTM回归模型Matlab代码:适用于多变量时序预测的电力负荷与光伏功率预测,NRBO-Transformer结合BiLSTM神经网络的时序数据回归
- 【微信小程序源码】京东白条
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


