馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3>1. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 2: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data .. --upload_data </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
</details>
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip该项目是个人毕设项目源码,评审分达到97分,都经过严格调试,确保可以运行!放心下载使用。该项目资源主要针对计算机相关专业的学生或从业者下载使用,也可作为期末课程设计、课程大作业、毕业设计等。 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip 基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源
资源推荐
资源详情
资源评论
收起资源包目录
基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目).zip (93个子文件)
基于YOLOV5加dlib实现驾驶员疲劳检测识别项目源码+模型+使用说明(高分项目)
out.jpg 481KB
image.png 193KB
detector.svm 42KB
20230212170416.png 415KB
shape_predictor_68_face_landmarks.dat 95.08MB
main.py 6KB
best.pt 55.66MB
utils
__init__.py 0B
loss.py 9KB
loggers
__init__.py 6KB
wandb
__init__.py 0B
sweep.yaml 2KB
log_dataset.py 891B
sweep.py 989B
README.md 10KB
wandb_utils.py 25KB
augmentations.py 11KB
flask_rest_api
example_request.py 299B
restapi.py 1KB
README.md 2KB
metrics.py 13KB
aws
__init__.py 0B
userdata.sh 1KB
mime.sh 780B
resume.py 1KB
autoanchor.py 7KB
general.py 33KB
activations.py 4KB
google_app_engine
Dockerfile 821B
app.yaml 173B
additional_requirements.txt 105B
downloads.py 6KB
plots.py 19KB
datasets.py 43KB
callbacks.py 2KB
__pycache__
activations.cpython-38.pyc 4KB
metrics.cpython-38.pyc 10KB
torch_utils.cpython-38.pyc 12KB
datasets.cpython-38.pyc 34KB
augmentations.cpython-38.pyc 9KB
general.cpython-38.pyc 29KB
autoanchor.cpython-38.pyc 6KB
downloads.cpython-38.pyc 4KB
__init__.cpython-38.pyc 142B
plots.cpython-38.pyc 17KB
torch_utils.py 14KB
yolov5.py 10KB
.idea
misc.xml 182B
inspectionProfiles
Project_Default.xml 428B
profiles_settings.xml 174B
modules.xml 280B
pythonProject4.iml 284B
.gitignore 47B
bus.jpg 476KB
yolov5s.pt 14.12MB
requirements.txt 1KB
models
hub
yolov5x6.yaml 2KB
anchors.yaml 3KB
yolov5-p2.yaml 2KB
yolov5s-ghost.yaml 1KB
yolov5-panet.yaml 1KB
yolov5s6.yaml 2KB
yolov3.yaml 2KB
yolov5-p6.yaml 2KB
yolov5n6.yaml 2KB
yolov5-bifpn.yaml 1KB
yolov5-p7.yaml 2KB
yolov5l6.yaml 2KB
yolov5m6.yaml 2KB
yolov3-spp.yaml 2KB
yolov3-tiny.yaml 1KB
yolov5-fpn.yaml 1KB
yolov5s-transformer.yaml 1KB
__init__.py 0B
tf.py 20KB
yolov5m.yaml 1KB
yolov5s.yaml 1KB
yolov5l.yaml 1KB
common.py 20KB
experimental.py 4KB
__pycache__
experimental.cpython-38.pyc 5KB
common.cpython-38.pyc 21KB
yolo.cpython-38.pyc 12KB
__init__.cpython-38.pyc 143B
yolov5x.yaml 1KB
yolov5n.yaml 1KB
yolo.py 14KB
train.py 1KB
test.py 970B
input.mp4 9.18MB
output.mp4 1.75MB
README.md 905B
smoke.py 5KB
共 93 条
- 1
资源评论
- njxtdcq1002024-05-18超级好的资源,很值得参考学习,对我启发很大,支持!
猰貐的新时代
- 粉丝: 1w+
- 资源: 3014
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 手机数据恢复技术及其商业运作模式探析
- 大模型安全实践(2024)
- dotnet-csharp.pdf
- 副业创收策略:高性价比内存卡销售及市场定位分析
- dotnet-csharp-language-reference.pdf
- dotnet-csharp-specification.pdf
- 副业指南之本地流量变现方案:针对宝妈群体的社区团购运营策略
- 负债人群零成本抖音快手知识传播创富指南
- 2021mathorcup数学建模A题论文(后附代码).docx
- 基于SEO优化的高收益写真站点搭建与运营指南
- 基于MATLAB m编程的发动机最优工作曲线计算程序(OOL),在此工作曲线下,发动机燃油消耗最小 hot 文件内含:1、发动机最优工作曲线计算程序m文件;2、发动机万有特性数据excel文件
- 基于Yunzai机器人框架的群互动插件 Gi-plugin 设计源码
- ziyuanaaaaaaaaaa
- 基于Vue框架的JavaScript、TypeScript、CSS网络货运平台移动端小程序设计源码
- 基于HTML、TypeScript、JavaScript的全面运动健康手环App设计源码
- 抖音平台明星周边产品营销策略与获利方法探讨
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功