# nbconvert
### Jupyter Notebook Conversion
[![Build Status](https://github.com/jupyter/nbconvert/actions/workflows/tests.yml/badge.svg?query=branch%3Amain++)](https://github.com/jupyter/nbconvert/actions/workflows/tests.yml/badge.svg?query=branch%3Amain++)
[![Documentation Status](https://readthedocs.org/projects/nbconvert/badge/?version=latest)](https://nbconvert.readthedocs.io/en/latest/?badge=latest)
[![codecov.io](https://codecov.io/gh/jupyter/nbconvert/coverage.svg?branch=main)](https://codecov.io/gh/gh/nbconvert?branch=main)
The **nbconvert** tool, `jupyter nbconvert`, converts notebooks to various other
formats via [Jinja] templates. The nbconvert tool allows you to convert an
`.ipynb` notebook file into various static formats including:
- HTML
- LaTeX
- PDF
- Reveal JS
- Markdown (md)
- ReStructured Text (rst)
- executable script
## Usage
From the command line, use nbconvert to convert a Jupyter notebook (_input_) to a
a different format (_output_). The basic command structure is:
```
$ jupyter nbconvert --to <output format> <input notebook>
```
where `<output format>` is the desired output format and `<input notebook>` is the
filename of the Jupyter notebook.
### Example: Convert a notebook to HTML
Convert Jupyter notebook file, `mynotebook.ipynb`, to HTML using:
```
$ jupyter nbconvert --to html mynotebook.ipynb
```
This command creates an HTML output file named `mynotebook.html`.
## Dev Install
Check if pandoc is installed (`pandoc --version`); if needed, install:
```
sudo apt-get install pandoc
```
Or
```
brew install pandoc
```
Install nbconvert for development using:
```
git clone https://github.com/jupyter/nbconvert.git
cd nbconvert
pip install -e .
```
Running the tests after a dev install above:
```
pip install nbconvert[test]
py.test --pyargs nbconvert
```
## Documentation
- [Documentation for Jupyter nbconvert](https://nbconvert.readthedocs.io/en/latest/)
\[[PDF](https://media.readthedocs.org/pdf/nbconvert/latest/nbconvert.pdf)\]
- [nbconvert examples on GitHub](https://github.com/jupyter/nbconvert-examples)
- [Documentation for Project Jupyter](https://jupyter.readthedocs.io/en/latest/index.html)
\[[PDF](https://media.readthedocs.org/pdf/jupyter/latest/jupyter.pdf)\]
## Technical Support
- [Issues and Bug Reports](https://github.com/jupyter/nbconvert/issues): A place to report
bugs or regressions found for nbconvert
- [Community Technical Support and Discussion - Discourse](https://discourse.jupyter.org/): A place for
installation, configuration, and troubleshooting assistannce by the Jupyter community.
As a non-profit project and maintainers who are primarily volunteers, we encourage you
to ask questions and share your knowledge on Discourse.
## Jupyter Resources
- [Jupyter mailing list](https://groups.google.com/forum/#!forum/jupyter)
- [Project Jupyter website](https://jupyter.org)
## About the Jupyter Development Team
The Jupyter Development Team is the set of all contributors to the Jupyter project.
This includes all of the Jupyter subprojects.
The core team that coordinates development on GitHub can be found here:
https://github.com/jupyter/.
## Our Copyright Policy
Jupyter uses a shared copyright model. Each contributor maintains copyright
over their contributions to Jupyter. But, it is important to note that these
contributions are typically only changes to the repositories. Thus, the Jupyter
source code, in its entirety is not the copyright of any single person or
institution. Instead, it is the collective copyright of the entire Jupyter
Development Team. If individual contributors want to maintain a record of what
changes/contributions they have specific copyright on, they should indicate
their copyright in the commit message of the change, when they commit the
change to one of the Jupyter repositories.
With this in mind, the following banner should be used in any source code file
to indicate the copyright and license terms:
```
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
```
[jinja]: http://jinja.pocoo.org/
没有合适的资源?快使用搜索试试~ 我知道了~
nbconvert-7.3.0.tar.gz
0 下载量 71 浏览量
2024-06-20
23:52:36
上传
评论
收藏 859KB GZ 举报
温馨提示
Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
资源推荐
资源详情
资源评论
收起资源包目录
nbconvert-7.3.0.tar.gz (276个子文件)
make.bat 7KB
index.css 568KB
style.css 260KB
style.css 259KB
theme-dark.css 16KB
theme-light.css 15KB
custom_reveal.css 2KB
.git-blame-ignore-revs 71B
.gitignore 774B
notebook2.ipynb 123KB
Widget_List.ipynb 94KB
attachment.ipynb 45KB
svg.ipynb 19KB
notebook4_jpeg.ipynb 18KB
issue1849_svg.ipynb 18KB
nbconvert_library.ipynb 18KB
pngmetadata.ipynb 16KB
notebook2.ipynb 10KB
markdown_display_priority.ipynb 8KB
notebook_inject.ipynb 6KB
notebook1.ipynb 6KB
notebook_tags.ipynb 2KB
prompt_numbers.ipynb 1KB
notebook3_with_errors.ipynb 1KB
rawtest.ipynb 1KB
notebook3.ipynb 997B
Unexecuted_widget.ipynb 988B
Unexecuted_widget_2.ipynb 988B
notebook5_embed_images.ipynb 938B
MixedMarkdown.ipynb 820B
latex-linked-image.ipynb 541B
notebook_jl.ipynb 450B
HelloWorld.ipynb 357B
base.html.j2 10KB
base.tex.j2 9KB
base.html.j2 8KB
style_jupyter.tex.j2 8KB
null.j2 6KB
null.j2 5KB
index.html.j2 5KB
index.html.j2 4KB
index.html.j2 3KB
index.rst.j2 3KB
document_contents.tex.j2 3KB
style_ipython.tex.j2 3KB
index.html.j2 2KB
index.asciidoc.j2 2KB
index.md.j2 2KB
style_bw_ipython.tex.j2 2KB
display_priority.j2 2KB
display_priority.j2 1KB
jupyter_widgets.html.j2 1KB
mathjax.html.j2 1KB
report.tex.j2 909B
base.html.j2 872B
style_python.tex.j2 794B
index.tex.j2 496B
style_bw_python.tex.j2 479B
index.py.j2 472B
cellslidedata.j2 410B
celltags.j2 231B
cell_id_anchor.j2 160B
lablike.html.j2 98B
script.j2 84B
index.html.j2 39B
index.pdf.j2 36B
containerized_deployments.jpeg 12KB
conf.json 337B
conf.json 243B
conf.json 217B
conf.json 126B
conf.json 86B
conf.json 79B
conf.json 78B
conf.json 78B
conf.json 78B
conf.json 77B
conf.json 75B
conf.json 74B
LICENSE 2KB
.mailmap 11KB
Makefile 7KB
Makefile 682B
CHANGELOG.md 68KB
README.md 4KB
CONTRIBUTING.md 2KB
RELEASE.md 2KB
README.md 1KB
README.md 510B
bug_report.md 504B
feature_request.md 365B
README.md 307B
question.md 262B
README.md 104B
PKG-INFO 8KB
image2.png 172KB
preprocessor_inheritance.png 64KB
exporter_inheritance.png 36KB
image1.png 36KB
writer_inheritance.png 8KB
共 276 条
- 1
- 2
- 3
资源评论
程序员Chino的日记
- 粉丝: 3719
- 资源: 5万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【创新无忧】基于鲸鱼优化算法WOA优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于鲸鱼优化算法WOA优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于鲸鱼优化算法WOA优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于鲸鱼优化算法WOA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于鲸鱼优化算法WOA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于鲸鱼优化算法WOA优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 小戴人工智能PurposeAI-20241205分词字符集识别的程序的详细解释 (第四版)
- 开始使用BigQuery访问HTTP Archive.pdf
- Web网页设计期末大作业 (模拟故宫博物馆).zip
- 基于node运行的JavaScript文件
- 【创新无忧】基于开普勒优化算法KOA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于开普勒优化算法KOA优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于开普勒优化算法KOA优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于开普勒优化算法KOA优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于开普勒优化算法KOA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于开普勒优化算法KOA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功