TensorFlow Plot (tfplot)
========================
[![pypi](https://img.shields.io/pypi/v/tensorflow-plot.svg?maxAge=86400)][pypi_tfplot]
[![Documentation Status](https://readthedocs.org/projects/tensorflow-plot/badge/?version=latest)][documentation]
[![Build Status](https://travis-ci.org/wookayin/tensorflow-plot.svg?branch=master)](https://travis-ci.org/wookayin/tensorflow-plot)
A [TensorFlow][tensorflow] utility for providing matplotlib-based **plot** operations
â [TensorBoard][tensorboard] â¤ï¸ [Matplotlib][matplotlib].
<p align="center">
<i> ð§ Under Construction â API might change!</i>
</p>
It allows us to draw **_any_** [matplotlib][matplotlib] plots or figures into images,
as a part of TensorFlow computation graph.
Especially, we can easily any plot and see the result image
as an image summary in [TensorBoard][tensorboard].
<p align="center">
<img src="./assets/tensorboard-plot-summary.png" width="70%" />
</p>
Quick Overview
--------------
There are two main ways of using `tfplot`: (i) Use as TF op, and (ii) Manually add summary protos.
### Usage: Decorator
You can directly declare a Tensor factory by using [`tfplot.autowrap`][tfplot-autowrap] as a decorator.
In the body of the wrapped function you can add any logic for drawing plots. Example:
```python
@tfplot.autowrap(figsize=(2, 2))
def plot_scatter(x: np.ndarray, y: np.ndarray, *, ax, color='red'):
ax.scatter(x, y, color=color)
x = tf.constant([1, 2, 3], dtype=tf.float32) # tf.Tensor
y = tf.constant([1, 4, 9], dtype=tf.float32) # tf.Tensor
plot_op = plot_scatter(x, y) # tf.Tensor shape=(?, ?, 4) dtype=uint8
```
### Usage: Wrap as TF ops
We can [wrap][tfplot-autowrap] **any** pure python function for plotting as a Tensorflow op, such as:
- (i) A python function that creates and return a matplotlib `Figure` (see below)
- (ii) A python function that has `fig` or `ax` keyword parameters (will be auto-injected);
e.g. [`seaborn.heatmap`](http://seaborn.pydata.org/generated/seaborn.heatmap.html)
- (iii) A method instance of [matplotlib `Axes`](https://matplotlib.org/api/axes_api.html);
e.g. [`Axes.scatter`](https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.scatter.html#matplotlib.axes.Axes.scatter)
Example of (i): You can define a python function that takes `numpy.ndarray` values as input (as an argument of Tensor input),
and draw a plot as a return value of `matplotlib.figure.Figure`.
The resulting TensorFlow plot op will be a RGBA image tensor of shape `[height, width, 4]` containing the resulting plot.
```python
def figure_heatmap(heatmap, cmap='jet'):
# draw a heatmap with a colorbar
fig, ax = tfplot.subplots(figsize=(4, 3)) # DON'T USE plt.subplots() !!!!
im = ax.imshow(heatmap, cmap=cmap)
fig.colorbar(im)
return fig
heatmap_tensor = ... # tf.Tensor shape=(16, 16) dtype=float32
# (a) wrap function as a Tensor factory
plot_op = tfplot.autowrap(figure_heatmap)(heatmap_tensor) # tf.Tensor shape=(?, ?, 4) dtype=uint8
# (b) direct invocation similar to tf.py_func
plot_op = tfplot.plot(figure_heatmap, [heatmap_tensor], cmap='jet')
# (c) or just directly add an image summary with the plot
tfplot.summary.plot("heatmap_summary", figure_heatmap, [heatmap_tensor])
```
Example of (ii):
```python tfplot
import tfplot
import seaborn.apionly as sns
tf_heatmap = tfplot.autowrap(sns.heatmap, figsize=(4, 4), batch=True) # function: Tensor -> Tensor
plot_op = tf_heatmap(attention_maps) # tf.Tensor shape=(?, 400, 400, 4) dtype=uint8
tf.summary.image("attention_maps", plot_op)
```
Please take a look at the [the showcase][examples-showcase] or [examples directory][examples-dir] for more examples and use cases.
[The full documentation][documentation] including API docs can be found at [readthedocs][documentation].
### Usage: Manually add summary protos
```python
import tensorboard as tb
fig, ax = ...
# Get RGB image manually or by executing plot ops.
embedding_plot = sess.run(plot_op) # ndarray [H, W, 3] uint8
embedding_plot = tfplot.figure_to_array(fig) # ndarray [H, W, 3] uint8
summary_pb = tb.summary.image_pb('plot_embedding', [embedding_plot])
summary_writer.write_add_summary(summary_pb, global_step=global_step)
```
Installation
------------
```
pip install tensorflow-plot
```
To grab the latest development version:
```
pip install git+https://github.com/wookayin/tensorflow-plot.git@master
```
Note
----
### Some comments on Speed
* Matplotlib operations can be **very** slow as Matplotlib runs in python rather than native code,
so please watch out for runtime speed.
There is still a room for improvement, which will be addressed in the near future.
* Moreover, it might be also a good idea to draw plots from the main code (rather than having a TF op) and add them as image summaries.
Please use this library at your best discernment.
### Thread-safety issue
Please use **object-oriented** matplotlib APIs (e.g. `Figure`, `AxesSubplot`)
instead of [pyplot] APIs (i.e. `matplotlib.pyplot` or `plt.XXX()`)
when creating and drawing plots.
This is because [pyplot] APIs are not *thread-safe*,
while the TensorFlow plot operations are usually executed in multi-threaded manners.
For example, avoid any use of `pyplot` (or `plt`):
```python
# DON'T DO LIKE THIS !!!
def figure_heatmap(heatmap):
fig = plt.figure() # <--- NO!
plt.imshow(heatmap)
return fig
```
and do it like:
```python
def figure_heatmap(heatmap):
fig = matplotlib.figure.Figure() # or just `fig = tfplot.Figure()`
ax = fig.add_subplot(1, 1, 1) # ax: AxesSubplot
# or, just `fig, ax = tfplot.subplots()`
ax.imshow(heatmap)
return fig # fig: Figure
```
For example, `tfplot.subplots()` is a good replacement for `plt.subplots()`
to use inside plot functions.
Alternatively, you can just take advantage of automatic injection of `fig` and/or `ax`.
[pypi_tfplot]: https://pypi.python.org/pypi/tfplot
[matplotlib]: http://matplotlib.org/
[tensorflow]: https://www.tensorflow.org/
[tensorboard]: https://www.tensorflow.org/get_started/summaries_and_tensorboard
[pyplot]: http://matplotlib.org/api/pyplot_api.html
[examples-dir]: https://github.com/wookayin/tensorflow-plot/blob/master/examples/
[examples-showcase]: https://github.com/wookayin/tensorflow-plot/blob/master/examples/showcases.ipynb
[documentation]: http://tensorflow-plot.readthedocs.io/en/latest/
[tfplot-autowrap]: https://tensorflow-plot.readthedocs.io/en/latest/api/tfplot.html#tfplot.autowrap
### TensorFlow compatibility
Currently, `tfplot` is compatible with TensorFlow 1.x series.
Support for eager execution and TF 2.0 will be coming soon!
License
-------
[MIT License](LICENSE) © Jongwook Choi
没有合适的资源?快使用搜索试试~ 我知道了~
tensorflow-plot-0.3.1.tar.gz
0 下载量 57 浏览量
2024-03-21
12:48:44
上传
评论
收藏 22KB GZ 举报
温馨提示
Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
资源推荐
资源详情
资源评论
收起资源包目录
tensorflow-plot-0.3.1.tar.gz (23个子文件)
tensorflow-plot-0.3.1
tensorflow_plot.egg-info
SOURCES.txt 508B
top_level.txt 7B
PKG-INFO 9KB
requires.txt 42B
not-zip-safe 1B
dependency_links.txt 1B
setup.py 3KB
PKG-INFO 9KB
tfplot
__init__.py 455B
figure.py 4KB
util.py 2KB
test_util.py 1KB
mpl_figure.py 5KB
contrib.py 2KB
summary.py 6KB
wrapper.py 13KB
ops.py 6KB
ops_test.py 5KB
contrib_test.py 1KB
summary_test.py 4KB
wrapper_test.py 8KB
setup.cfg 98B
README.md 7KB
共 23 条
- 1
资源评论
程序员Chino的日记
- 粉丝: 3713
- 资源: 5万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功