# TensorFlow GNN
**This is an early (alpha) release to get community feedback.** It's under
active development and **we may break API compatibility in the future**.
> **NOTE**:
> 2023/01/11: Release 0.4.1 was yanked due to a broken merge that passed through
> our tests. Release 0.4.0 still works, and we are working on a new release,
> stay tuned.
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow
platform. It contains the following components:
* A high-level Keras-style API to create GNN models that can easily be composed
with other types of models. GNNs are often used in combination with ranking,
deep-retrieval (dual-encoders) or mixed with other types of models
(image, text, etc.)
* GNN API for heterogeneous graphs. Many of the graph problems we approach at
Google and in the real world contain different types of nodes and edges.
Hence the emphasis in heterogeneous models.
* A well-defined schema to declare the topology of a graph, and tools to
validate it. It describes the shape of its training data and serves to guide
other tools.
* A GraphTensor composite tensor type which holds graph data, can be batched,
and has efficient graph manipulation functionality available.
* A library of operations on the GraphTensor structure:
* Various efficient broadcast and pooling operations on nodes and edges, and
related tools.
* A library of standard baked convolutions, that can be easily extended by
ML engineers/researchers.
* A high-level API for product engineers to quickly build GNN models without
necessarily worrying about its details.
* A set of tools used to convert graph datasets and sample from large
graphs.
* An encoding of graph-shaped training data on file, as well as a library used
to parse this data into a data structure your model can extract the various
features.
This library is an OSS port of a Google internal library used in a broad variety
of contexts, on homogeneous and heterogeneous graphs, and in conjunction with
other scalable graph mining tools.
For more details, please see our [documentation](tensorflow_gnn/docs/guide/overview.md).
For background and discussion, please see O. Ferludin et al.:
[TF-GNN: Graph Neural Networks in TensorFlow](https://arxiv.org/abs/2207.03522),
2022 (full citation below).
## Installation Instructions
##### Latest available pip wheel.
`pip install tensorflow_gnn`
##### Installation from source.
A virtual environment is highly recommended.
1. **Clone tensorflow_gnn**
> `$> git clone https://github.com/tensorflow/gnn.git tensorflow_gnn`
2. **Install TensorFlow**
TF-GNN currently uses
[tf.ExtensionTypes](https://www.tensorflow.org/api_docs/python/tf/experimental/ExtensionType),
which is a feature of TensorFlow 2.7. As such, you will need to install
TensorFlow build, following the instructions here:
https://www.tensorflow.org/install/pip.
> `$> pip install tensorflow`
3. **Install Bazel**
Bazel is required to build the source of this package. Follow the
instructions here to install Bazel for your OS:
https://docs.bazel.build/versions/main/install.html
4. **Install tensorflow_gnn**
> `$> cd tensorflow_gnn && python3 -m pip install .`
## Citation
When referencing this library in a paper, please cite the
[TF-GNN paper](https://arxiv.org/abs/2207.03522):
```
@article{tfgnn,
author = {Oleksandr Ferludin and Arno Eigenwillig and Martin Blais and
Dustin Zelle and Jan Pfeifer and Alvaro Sanchez{-}Gonzalez and
Sibon Li and Sami Abu{-}El{-}Haija and Peter Battaglia and
Neslihan Bulut and Jonathan Halcrow and
Filipe Miguel Gon{\c{c}}alves de Almeida and Silvio Lattanzi and
Andr{\'{e}} Linhares and Brandon Mayer and Vahab Mirrokni and
John Palowitch and Mihir Paradkar and Jennifer She and
Anton Tsitsulin and Kevin Villela and Lisa Wang and David Wong and
Bryan Perozzi},
title = {{TF-GNN:} Graph Neural Networks in TensorFlow},
journal = {CoRR},
volume = {abs/2207.03522},
year = {2022},
url = {http://arxiv.org/abs/2207.03522},
}
```
没有合适的资源?快使用搜索试试~ 我知道了~
tensorflow-gnn-0.5.1.tar.gz
0 下载量 24 浏览量
2024-03-21
12:37:11
上传
评论
收藏 398KB GZ 举报
温馨提示
Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
资源推荐
资源详情
资源评论
收起资源包目录
tensorflow-gnn-0.5.1.tar.gz (220个子文件)
AUTHORS 304B
BUILD 11KB
BUILD 6KB
BUILD 3KB
BUILD 3KB
BUILD 2KB
BUILD 2KB
BUILD 2KB
BUILD 2KB
BUILD 2KB
BUILD 2KB
BUILD 1KB
BUILD 1KB
BUILD 1022B
BUILD 1013B
BUILD 999B
BUILD 986B
BUILD 886B
BUILD 855B
BUILD 841B
BUILD 759B
BUILD 735B
BUILD 675B
BUILD 455B
BUILD 420B
BUILD 412B
BUILD 373B
BUILD 295B
BUILD 294B
BUILD 272B
BUILD 167B
tensorflow_gnn.bzl 3KB
tfdep.bzl 495B
setup.cfg 38B
MANIFEST.in 177B
LICENSE 11KB
README.md 4KB
not-zip-safe 1B
PKG-INFO 5KB
PKG-INFO 5KB
graph_schema.proto 11KB
sampling_spec.proto 7KB
sampled_stats.proto 3KB
subgraph.proto 2KB
examples.proto 1023B
graph_tensor_ops_test.py 71KB
graph_tensor.py 59KB
graph_tensor_ops.py 55KB
graph_tensor_test.py 52KB
layers_test.py 46KB
unigraph.py 41KB
graph_piece.py 40KB
batching_utils.py 38KB
layers.py 36KB
int_arithmetic_sampler.py 34KB
layers.py 34KB
batching_utils_test.py 32KB
sampling_lib_test.py 31KB
unigraph_test.py 31KB
datasets.py 31KB
graph_piece_test.py 28KB
graph_tensor_io_test.py 27KB
layers.py 27KB
graph_ops.py 26KB
padding_ops.py 26KB
padding_ops_test.py 26KB
layers_test.py 26KB
graph_ops_test.py 25KB
graph_update.py 25KB
layers_test.py 23KB
map_features_test.py 23KB
sampling_lib.py 22KB
graph_sampler_test.py 22KB
adjacency.py 20KB
graph_tensor_io.py 20KB
datasets.py 19KB
convolution_base.py 19KB
tensor_utils.py 19KB
gcn_conv_test.py 19KB
graph_sampler.py 19KB
convert_ogb_dataset.py 17KB
tensor_utils.py 16KB
tensor_utils_test.py 16KB
map_features.py 16KB
schema_validation.py 16KB
subgraph_test.py 16KB
convolution_base_test.py 15KB
schema_validation_test.py 15KB
sampling_spec_builder.py 15KB
keras_e2e_test.py 14KB
orchestration.py 14KB
models.py 14KB
subgraph.py 13KB
keras_tensors_test.py 13KB
adjacency_test.py 13KB
graph_tensor_random.py 13KB
attribution.py 13KB
tensor_utils_test.py 13KB
schema_utils.py 12KB
train.py 12KB
共 220 条
- 1
- 2
- 3
资源评论
程序员Chino的日记
- 粉丝: 3670
- 资源: 5万+
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 物理机安装群晖DS3617教程(用U盘做引导)
- 使用jQuery实现一个加购物车飞入动画
- 本项目旨在开发一个基于情感词典加权组合方式的文本情感分析系统,通过以下几个目标来实现: 构建情感词典:收集并整理包含情感极性(正面或负面)的词汇 加权组合:通过加权机制,根据词汇在文本中的重要性、
- Visual Basic从入门到精通:基础知识与实践指南
- 炫酷文本粒子threejs特效
- hreejs地球世界轮廓线条动画
- 以非线性最小二乘算法为基础的空间坐标转换探讨
- 一种顾及二次项的非线性条件平差法-刘国林
- TradingView 轻量级图表 JavaScript 库的 Python 框架 .zip
- Go语言入门到精通:从环境搭建到高级特性实战教程
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功