# pandas-plink
[![PyPI-License](https://img.shields.io/pypi/l/pandas-plink.svg?style=flat-square)](https://pypi.python.org/pypi/pandas-plink/)
[![PyPI-Version](https://img.shields.io/pypi/v/pandas-plink.svg?style=flat-square)](https://pypi.python.org/pypi/pandas-plink/) [![Anaconda-Version](https://anaconda.org/conda-forge/pandas-plink/badges/version.svg)](https://anaconda.org/conda-forge/pandas-plink) [![Anaconda-Downloads](https://anaconda.org/conda-forge/pandas-plink/badges/downloads.svg)](https://anaconda.org/conda-forge/pandas-plink) [![Documentation Status](https://readthedocs.org/projects/pandas-plink/badge/?style=flat-square&version=latest)](https://pandas-plink.readthedocs.io/en/latest/)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/279d016293724b79ad8e667c1440d3d0)](https://www.codacy.com/app/danilo.horta/pandas-plink?utm_source=github.com&utm_medium=referral&utm_content=limix/pandas-plink&utm_campaign=Badge_Grade)
PLINK reader for Python.
It reads binary PLINK files into [Pandas](http://pandas.pydata.org) data frame
and [Dask](http://dask.pydata.org/en/latest/index.html) array.
This package handles larger-than-memory data sets by reading the SNP matrix
on-demand.
## Install
The recommended way of installing it is via
[conda](http://conda.pydata.org/docs/index.html)
```bash
conda install -c conda-forge pandas-plink
```
An alternative way would be via pip
```
pip install pandas-plink
```
## Running the tests
After installation, you can test it
```
python -c "import pandas_plink; pandas_plink.test()"
```
as long as you have [pytest](http://docs.pytest.org/en/latest/).
## Usage
It is as simple as
```python
from pandas_plink import read_plink
(bim, fam, G) = read_plink('/path/to/data')
```
Refer to [documentation](http://pandas-plink.readthedocs.io/en/latest/)
for more information.
## Authors
* **Danilo Horta** - [https://github.com/Horta](https://github.com/Horta)
## License
This project is licensed under the MIT License - see the
[LICENSE](LICENSE) file for details
程序员Chino的日记
- 粉丝: 3747
- 资源: 5万+
最新资源
- 社交网络引流副业的简易实施策略及收益分析
- 西门子消防图层显示软件
- 基于Node.js和Express框架的租房系统房屋出租管理后端设计源码
- VideoSpeed_87621.zip
- 基于Typescript和CSS的八电极指标报告PDF设计源码
- 短视频游戏推广副业快速获利-通过快手小游戏合伙人计划轻松入行
- MATLAB仿真均匀光纤布拉格光栅 传输矩阵法 可以仿真得到其透射谱与反射谱
- 基于Vue框架的快递代取后台管理新版本设计源码
- Linux驱动开发环境Ubuntu,已经制作好网络文件系统和zImage内核,已经交叉编译好Qt5.6.2 1.安装好交叉编译工具链 2.制作好网络文件系统 3.已经编译好Linux内核源码树(版本
- 基于广西忻城红渡初中22班的HTML, JavaScript, CSS同学录设计源码
- MATLAB环境下一种时间序列信号的基线消除算法 算法运行环境为MATLAB r2018a 1.所有代码均经过运行测试,没有问题 2.前请仔细阅读作品简介,这非常重要,因为涉及到不同的编程语言
- 基于Mql5语言的MT5客户端直连期货公司CTP柜台的期货程序化交易软件设计源码
- containerd源码1.7.22 tag
- 基于Java语言的Swing游戏引擎设计源码
- MATLAB环境下一种基于粒子群优化算法神经网络非线性函数拟合方法 算法运行环境为MATLAB R2018a,执行基于粒子群优化算法神经网络非线性函数拟合,并与其他改进的粒子群算法进行对比,结果如下
- 图像处理实验、图像分割 1打开计算机,安装和启动MATLAB程序;程序组中“work”文件夹中应有待处理的图像文件; 2对于血细胞图像 a).对图像进行去噪、增强处理; b)运用
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈